Skip to main content

High-Speed Grinding of Advanced Ceramics and Combination Materials

  • Living reference work entry
  • First Online:
  • 297 Accesses

Part of the book series: Precision Manufacturing ((PRECISION))

Abstract

High-speed grinding is an important process for high-performance machining of advanced materials due to its capability for high-efficiency and excellent surface integrity. In this chapter we introduced the fundamentals of high-speed grinding, followed by a review of our practices of high-speed grinding in recent years. First, we presented our experience gained from the high-speed grinding of engineering ceramics and thin film materials, including alumina, alumina-titania, yttria partially stabilized tetragonal zirconia, and thin film multilayer solar panels. High-speed grinding of combination materials was then introduced focusing on the selection of grinding wheel and parameters and development of unique coolant supply technology.

This is a preview of subscription content, log in via an institution.

References

  • Batako A, Rowe W, Morgan M (2005) Temperature measurement in high efficiency deep grinding. Int J Mach Tools Manuf 45(11):1231–1245

    Article  Google Scholar 

  • Bhushan B (2010) Springer handbook of nanotechnology. Springer Science & Business Media, New York

    Book  Google Scholar 

  • Bifano TG, Dow T, Scattergood R (1991) Ductile-regime grinding: a new technology for machining brittle materials. J Manuf Sci Eng 113(2):184–189

    Google Scholar 

  • Bouclé J, Ravirajan P, Nelson J (2007) Hybrid polymer–metal oxide thin films for photovoltaic applications. J Mater Chem 17(30):3141–3153

    Article  Google Scholar 

  • Brinksmeier E, Mutlugünes Y, Klocke F, Aurich J, Shore P, Ohmori H (2010) Ultra-precision grinding. CIRP Ann Manuf Technol 59(2):652–671

    Article  Google Scholar 

  • Cai R, Rowe W (2004) Assessment of vitrified CBN wheels for precision grinding. Int J Mach Tools Manuf 44(12):1391–1402

    Article  Google Scholar 

  • Chen J, Bull S (2007) Indentation fracture and toughness assessment for thin optical coatings on glass. J Phys D Appl Phys 40(18):5401

    Article  Google Scholar 

  • Doi T, Uhlmann E, Marinescu ID (2015) Handbook of ceramics grinding and polishing. William Andrew, Oxford

    Google Scholar 

  • Favache A, Sacre C-H, Coulombier M, Libralesso L, Guaino P, Raskin J-P, Bailly C, Nysten B, Pardoen T (2015) Fracture mechanics based analysis of the scratch resistance of thin brittle coatings on a soft interlayer. Wear 330:461–468

    Article  Google Scholar 

  • Funayama N, Matsuda J (2005) Development of high-performance CBN and diamond grinding wheels for high-speed grinding. New Diam Front Carbon Technol 15(4):173–180

    Google Scholar 

  • Huang H (2003) Machining characteristics and surface integrity of yttria stabilized tetragonal zirconia in high speed deep grinding. Mater Sci Eng A 345(1):155–163

    Article  Google Scholar 

  • Huang J-C, Cheng F-J (2016) The evaluation of nanotribological property of nano thin film under different environment by atomic force microscopy. Microsyst Technol 22(10):2595–2600

    Article  MathSciNet  Google Scholar 

  • Huang H, Liu Y (2003) Experimental investigations of machining characteristics and removal mechanisms of advanced ceramics in high speed deep grinding. Int J Mach Tools Manuf 43(8):811–823

    Article  Google Scholar 

  • Huang H, Yin L, Zhou L (2003) High speed grinding of silicon nitride with resin bond diamond wheels. J Mater Process Technol 141(3):329–336

    Article  Google Scholar 

  • Huang H, Kanno S, Liu X, Gong Z (2005) Highly integrated and automated high-speed grinding system for printer heads constructed by combination materials. Int J Adv Manuf Technol 25(1):1–9

    Article  Google Scholar 

  • Huang JC, Li CL, Lee JW (2012) The study of nanoscratch and nanomachining on hard multilayer thin films using atomic force microscope. Scanning 34(1):51–59

    Article  Google Scholar 

  • Hwang T, Evans CJ, Malkin S (2000) An investigation of high speed grinding with electroplated diamond wheels. CIRP Ann Manuf Technol 49(1):245–248

    Article  Google Scholar 

  • Inasaki I (1987) Grinding of hard and brittle materials. CIRP Ann Manuf Technol 36(2):463–471

    Article  Google Scholar 

  • Inasaki I, Nakayama K (1986) High-efficiency grinding of advanced ceramics. CIRP Ann Manuf Technol 35(1):211–214

    Article  Google Scholar 

  • Jackson M, Davis C, Hitchiner M, Mills B (2001) High-speed grinding with CBN grinding wheels – applications and future technology. J Mater Process Technol 110(1):78–88

    Article  Google Scholar 

  • Jahanmir S, Ramulu M, Koshy P (1999a) Machining of ceramics and composites. Marcel Dekker, New York

    Google Scholar 

  • Jahanmir S, Xu H, Ives L (1999b) Mechanisms of material removal in abrasive machining of ceramics. Manuf Eng Mater Process 53:11–84

    Google Scholar 

  • Jayaraman V, Lin Y, Pakala M, Lin R (1995) Fabrication of ultrathin metallic membranes on ceramic supports by sputter deposition. J Membr Sci 99(1):89–100

    Article  Google Scholar 

  • Kang C, Huang H (2016) Mechanical load-induced interfacial failure of a thin film multilayer in nanoscratching and diamond lapping. J Mater Process Technol 229:528–540

    Article  Google Scholar 

  • Kang C-W, Huang H (2017a) Deformation, failure and removal mechanisms of thin film structures in abrasive machining. Adv Manuf 5(1):1–19

    Article  Google Scholar 

  • Kang C, Huang H (2017b) A comparative study of conventional and high speed grinding characteristics of a thin film multilayer structure. Precis Eng 50:222–234

    Article  Google Scholar 

  • Kim S-S, Kim S-T, Ahn J-M, Kim K-H (2004) Magnetic and microwave absorbing properties of Co–Fe thin films plated on hollow ceramic microspheres of low density. J Magn Magn Mater 271(1):39–45

    Article  MathSciNet  Google Scholar 

  • Klocke F, Brinksmeier E, Evans C, Howes T, Minke E, Tönshoff H, Webster J, Stuff D (1997) High-speed grinding-fundamentals and state of the art in Europe, Japan, and the USA. CIRP Ann Manuf Technol 46(2):715–724

    Article  Google Scholar 

  • Klocke F, Verlemann E, Schippers C (1999) High-speed grinding of ceramics. Manuf Eng Mater Process 53:119–138

    Google Scholar 

  • Klocke F, Baus A, Beck T (2000) Coolant induced forces in CBN high speed grinding with shoe nozzles. CIRP Ann Manuf Technol 49(1):241–244

    Article  Google Scholar 

  • Kopac J, Krajnik P (2006) High-performance grinding – a review. J Mater Process Technol 175(1): 278–284

    Article  Google Scholar 

  • Leung T, Lee W, Lu X (1998) Diamond turning of silicon substrates in ductile-regime. J Mater Process Technol 73(1):42–48

    Article  Google Scholar 

  • Li Y, Rowe W, Mills B (1999) Study and selection of grinding conditions part 1: grinding conditions and selection strategy. Proc Inst Mech Eng B J Eng Manuf 213(2):119–129

    Article  Google Scholar 

  • Li J, Fang Q, Zhang L, Liu Y (2015) Subsurface damage mechanism of high speed grinding process in single crystal silicon revealed by atomistic simulations. Appl Surf Sci 324:464–474

    Article  Google Scholar 

  • Malkin S, Guo C (2008) Grinding technology: theory and application of machining with abrasives. Industrial Press, South Norwalk

    Google Scholar 

  • Malkin S, Hwang T (1996) Grinding mechanisms for ceramics. CIRP Ann Manuf Technol 45(2): 569–580

    Article  Google Scholar 

  • Marinescu I, Rowe B, Yin L, Wobker HG (2000) Abrasive processes. In: Handbook of ceramics grinding and polishing. Noyes Publications, Park Ridge, pp 94–189

    Google Scholar 

  • Marinescu ID, Hitchiner MP, Uhlmann E, Rowe WB, Inasaki I (2006) Handbook of machining with grinding wheels. CRC Press, Boca Raton

    Book  Google Scholar 

  • Oliveira J, Silva E, Guo C, Hashimoto F (2009) Industrial challenges in grinding. CIRP Ann Manuf Technol 58(2):663–680

    Article  Google Scholar 

  • Pang SC, Anderson MA, Chapman TW (2000) Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide. J Electrochem Soc 147(2):444–450

    Article  Google Scholar 

  • Ramesh K, Yeo S, Gowri S, Zhou L (2001) Experimental evaluation of super high-speed grinding of advanced ceramics. Int J Adv Manuf Technol 17(2):87–92

    Article  Google Scholar 

  • Shin D-Y, Grassia P, Derby B (2004) Numerical and experimental comparisons of mass transport rate in a piezoelectric drop-on-demand inkjet print head. Int J Mech Sci 46(2):181–199

    Article  Google Scholar 

  • Sumitomo T, Huang H, Zhou L (2011a) Deformation and material removal in a nanoscale multi-layer thin film solar panel using nanoscratch. Int J Mach Tools Manuf 51(3):182–189

    Article  Google Scholar 

  • Sumitomo T, Huang H, Zhou L (2011b) Multi-scale deformation and material removal in amorphous Si thin film solar panels. Int J Nanomanufacturing 7(1):39–53

    Article  Google Scholar 

  • Sumitomo T, Huang H, Zhou L, Shimizu J (2011c) Nanogrinding of multi-layered thin film amorphous Si solar panels. Int J Mach Tools Manuf 51(10):797–805

    Article  Google Scholar 

  • Sun X, Stephenson D, Ohnishi O, Baldwin A (2006) An investigation into parallel and cross grinding of BK7 glass. Precis Eng 30(2):145–153

    Article  Google Scholar 

  • Wang J, Neaton J, Zheng H, Nagarajan V, Ogale S, Liu B, Viehland D, Vaithyanathan V, Schlom D, Waghmare U (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299(5613):1719–1722

    Article  Google Scholar 

  • Xie G, Huang H (2008) An experimental investigation of temperature in high speed deep grinding of partially stabilized zirconia. Int J Mach Tools Manuf 48(14):1562–1568

    Article  Google Scholar 

  • Xu HH, Jahanmir S, Ives LK (1997) Effect of grinding on strength of tetragonal zirconia and zirconia-toughened alumina. Mach Sci Technol 1(1):49–66

    Article  Google Scholar 

  • Yin L, Huang H (2004) Ceramic response to high speed grinding. Mach Sci Technol 8(1):21–37

    Article  Google Scholar 

  • Yin L, Huang H, Ramesh K, Huang T (2005) High speed versus conventional grinding in high removal rate machining of alumina and alumina–titania. Int J Mach Tools Manuf 45(7):897–907

    Article  Google Scholar 

  • Yoshino M, Sivanandam A, Kinouchi Y, Matsumura T (2008) Critical depth of hard brittle materials on nano plastic forming. J Adv Mech Des Syst Manuf 2(1):59–70

    Article  Google Scholar 

  • Zhang B, Howes TD (1994) Material-removal mechanisms in grinding ceramics. CIRP Ann Manuf Technol 43(1):305–308

    Article  Google Scholar 

  • Zhong Z, Venkatesh V (2009) Recent developments in grinding of advanced materials. Int J Adv Manuf Technol 41(5–6):468–480

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Australian Research Council (ARC) under the Discovery Project Program (DP180103275). S. Gao would like to acknowledge the financial support from the Youth Program of National Natural Science Foundation of China (51505063).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shang Gao , Yueqin Wu or Han Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gao, S., Wu, Y., Huang, H. (2019). High-Speed Grinding of Advanced Ceramics and Combination Materials. In: Yang, S., Jiang, Z. (eds) Precision Machines. Precision Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-10-5192-0_18-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5192-0_18-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5192-0

  • Online ISBN: 978-981-10-5192-0

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics