Skip to main content

In-line Measurement Technology and Quality Control

  • Living reference work entry
  • First Online:
Metrology

Abstract

In-line quality control is able to provide direct feedback with regard to quality deviations in production systems. Thus, it is a crucial enabler to guarantee high-quality standards and prohibit waste within production. As an enabler for this, in-line measurement technology is to be implemented and applied in the production system in an effective manner. In this chapter, different types of in-line measurement technology are explained and structured. Based on this, a framework is introduced to systematically implement in-line metrology in production systems in order to realize suitable quality control cycles. Finally, the application of the framework is demonstrated in various industrial use cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aleshin NP, Murashov VV, Evgenov AG, Grigoriev MV, Shchipakov NA, Vasilenko SA, Krasnov IS (2016) The classification of flaws of metal materials synthesized by the selective laser melting method and the capabilities of nondestructive testing methods for their detection. Russ J Nondestruct Test 52(1):38–43

    Article  Google Scholar 

  • Colledani M, Tolio T (2006) Impact of quality control on production system performance. CIRP Ann-Manuf Technol 55(1):453–456

    Article  Google Scholar 

  • Colledani M, Ebrahimi D, Tolio T (2014) Integrated quality and production logistics modelling for the design of selective and adaptive assembly systems. CIRP Ann Manuf Technol 63(1):453–456

    Article  Google Scholar 

  • Damm B (2013) Robuste Kurbelwellenmessung mit Röntgenstrahlung. Dissertation. RWTH Aachen, Aachen

    Google Scholar 

  • DIN EN ISO 15530-3 (2012) Geometrische Produktspezifikation und -prüfung (GPS) – Verfahren zur Ermittlung der Messunsicherheit von Koordinatenmessgeräten (KMG) – Teil 3: Anwendung von kalibrierten Werkstücken oder Normalen

    Google Scholar 

  • Ebrahimi D (2014) Integrated quality and production logistic performance modeling for selective and adaptive assembly systems. Dissertation. Politecnico di Milano, Milano

    Google Scholar 

  • Eschner N, Kopf R, Lieneke T, Künneke T, Berger D, Häfner B et al (2017a) Kombination etablierter und additiver Fertigung. ZWF 112(7–8):469–472

    Article  Google Scholar 

  • Eschner N, Lingenhöl J, Öppling S, Lanza G (2017b) Monitoring a laser beam melting process with acoustic signalss. wt-online 107(11/12):818–823

    Google Scholar 

  • Everton SK, Hirsch M, Stravroulakis P, Leach RK, Clare AT (2016) Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater Des 95:431–445

    Article  Google Scholar 

  • Fanselow S, Sachs M, Wirth KE, Schmidt J, Peukert W (2016) New methods for process-adapted characterization for selective beam melting powders. In: Kniffka W, Eichmann M, Witt G (ed.) Rapid.Tech – International Trade Show & Conference for Additive Manufacturing. Proceedings of the 13th Rapid.Tech Conference. Hanser, Munich, pp 185–196

    Google Scholar 

  • Gevatter H-J, Grünhaupt U (2006) Handbuch der Mess- und Automatisierungstechnik in der Produktion. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Haefner B, Kraemer A, Stauss T, Lanza G (2014) Quality value stream mapping. Procedia CIRP 17:254–259

    Article  Google Scholar 

  • Imkamp D, Schmitt R, Berthold J (2012) Blick in die Zukunft der Fertigungsmesstechnik. tm Tech Mess 79(10):433–439

    Article  Google Scholar 

  • Iyama T, Mizuno M, McKay KN, Yoshihara N, Nishikawa N (2013) Optimal strategies for corrective assembly approach applied to a high-quality relay production system. Comput Ind 64(5):556–564

    Article  Google Scholar 

  • JCGM 100:2008 (2008) Evaluation of measurement data – guide to the expression of uncertainty in measurement (GUM). Joint Committee for Guides in Metrology

    Google Scholar 

  • JCGM 101:2008 (2008) Evaluation of measurement data – Supplement 1 to the “Guide to the expression of uncertainty in measurement” – Propagation of distributions using a Monte Carlo method. Joint Committeefor Guides in Metrology

    Google Scholar 

  • Kayasa MJ, Herrmann C (2012) A simulation-based evaluation of selective and adaptive production systems (SAPS) supported by quality strategy in production. Procedia CIRP 3:14–19

    Article  Google Scholar 

  • Kock H (2017) Track and trace fingerprint. Fraunhofer IPM, Freiburg. Available online at https://www.ipm.fraunhofer.de/content/dam/ipm/de/PDFs/Pressemitteilung/2017/PI-Track-trace-fingerprint-bauteil-rueckverfolgung.pdf. Updated on 6 Jan 2017, checked on 4 Apr 2018

    Google Scholar 

  • Koelmel A (2016) Integrierte Messtechnik für Prozessketten unreifer Technologien am Beispiel der Batterieproduktion für Elektrofahrzeuge. Dissertation. Karlsruhe Institute of Technology, Karlsruhe

    Google Scholar 

  • Koelmel A, Sauer A, Lanza G (2014) Quality-oriented production planning of battery assembly systems for electric mobility. Procedia CIRP 23:149–154

    Article  Google Scholar 

  • La Croix A (2008) Risiko-kontrollierte Anwendung von Innovation & technologischem Fortschritt – Abschlussbericht zum INS 24 Projekt: Standarisierte Entscheidungshilfe zur Reifegradbewertung im Proudukt-Lebenszyklus – Machbarkeitsstudie

    Google Scholar 

  • Lanza G, Haefner B, Kraemer A (2015) Optimization of selective assembly and adaptive manufacturing by means of cyber-physical system based matching. CIRP Ann Manuf Technol 64(1):399–402

    Article  Google Scholar 

  • Lanza G, Kopf R, Zaiß M, Stricker N, Eschner N, Jacob A et al (2017) Laser-Strahlschmelzen – Technologie mit Zukunftspotenzial. Ein Handlungsleitfaden. Karlsruhe Institute of Technology (KIT), Karlsruhe

    Google Scholar 

  • Loosen P, Funck M (2011) Integrative Produktion von Mikro-Lasern. In: Brecher C (ed) Cluster of excellence “Integrative production technology for high-wage countries”. Springer, Berlin/Heidelberg, pp 1068–1113

    Google Scholar 

  • Mankins JC (2009) Technology readiness assessments. A retrospective. Acta Astronaut 65(9–10):1216–1223

    Article  Google Scholar 

  • Matsuura S, Shinozaki N (2011) Optimal process design in selective assembly when components with smaller variance are manufactured at three shifted means. Int J Prod Res 49(3):869–882

    Article  Google Scholar 

  • Mease D, Nair VN, Sudjianto A (2004) Selective assembly in manufacturing: statistical issues and optimal binning strategies. Technometrics 46(2):165–175

    Google Scholar 

  • Nicolais L (2011) Wiley encyclopedia of composites. Sheet molding compounds. Wiley, Hoboken

    Book  Google Scholar 

  • Peter M, Fleischer J (2014) Rotor balancing by optimized magnet positioning during algorithm-controlled assembly process: selection and assembly of rotor components minimizing the unbalance. In: Franke J (ed.) Proceedings of the 4th International Electric Drives Production Conference (EDPC). IEEE, pp 1–4

    Google Scholar 

  • QASS GmbH (2018) Quality monitoring during welding. Available online at http://qass.net/downloads/QASS%20-%20Welding%20-%20Quality%20Monitoring.pdf. Updated on 4 June 2018, checked on 4 June 2018

  • Reif K (2012) Dieselmotor-management. Systeme, Komponenten, Steuerung und Regelung, 5th edn. Vieweg+Teubner, Wiesbaden

    Google Scholar 

  • Schmitt R, Damm B (2008) Prüfen und Messen im Takt. Wie sie mit Inline-Messtechnik ihre Wertschöpfung maximieren. QZ 53:57–59

    Google Scholar 

  • Schmitt R, Imkamp D, Bettenhausen K, Berthold J (2011) Fertigungsmesstechnik 2020. Technologie-Roadmap für die Messtechnik in der industriellen Produktion. VDI, Düsseldorf

    Google Scholar 

  • Spears TG, Gold SA (2016) In-process sensing in selective laser melting (SLM) additive manufacturing. Integr Mater Manuf Innov 5(2):1–25

    Google Scholar 

  • Wagner R, Haefner B, Lanza G (2018) Adaptive quality control strategies for high precision products. Procedia CIRP 75:57–62

    Google Scholar 

  • Weckenmann A, Jiang X, Sommer K-D, Neuschaefer-Rube U, Seewig J, Shawa L, Estler T (2009) Multisensor data fusion in dimensional metrology. CIRP Ann Manuf Technol 58(2):701–721

    Article  Google Scholar 

  • Zaiß M, Jank M-H, Netzelmann U, Waschkies T, Rabe U, Herrmann H-G et al (2017) Use of thermography and ultrasound for the quality control of SMC lightweight material reinforced by carbon fiber tapes. Procedia CIRP 62:33–38

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisela Lanza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lanza, G. et al. (2019). In-line Measurement Technology and Quality Control. In: Gao, W. (eds) Metrology. Precision Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-10-4912-5_14-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4912-5_14-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4912-5

  • Online ISBN: 978-981-10-4912-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics