Skip to main content

Dimensional Metrology Using Mode-Locked Lasers

  • Living reference work entry
  • First Online:

Part of the book series: Precision Manufacturing ((PRECISION))

Abstract

Laser-based optical interferometry has long been playing a central role in the progress of dimensional metrology for precision manufacturing. Meanwhile, mode-locked lasers are nowadays available to facilitate the progress by responding to ever-growing industrial demands on the measurement precision and functionality beyond the capabilities of conventional lasers. The optical spectrum of mode-locked lasers, referred to as the frequency comb, acts as the ruler enabling ultra-stable wavelengths to be produced for precision interferometry with traceability to the atomic clock. In addition, mode-locked lasers are employed directly as the light source offering ultrashort pulses, of which the time-of-flight can be detected with unprecedented precision in implementing long distance measurement. Further, mode-locked lasers are able to provide well-controlled temporal coherence in combination with high spatial coherence, being suited to overcome the technical barriers long standing in 3-D profiling of rough surfaces. In summary, mode-locked lasers are now ready to lead the advance of dimensional metrology by providing unique temporal and spectral benefits over conventional continuous wave lasers or broad-spectrum light sources.

This is a preview of subscription content, log in via an institution.

References

  • Bender PL, Currie DG, Poultney SK, Alley CO, Dicke RH, Wilkinson DT, Eckhardt DH, Faller JE, Kaula WM, Mulholland JD, Plotkin HH, Silverberg EC, Williams JG (1973) The lunar laser ranging experiment. Science 182(4109):229–238

    Article  Google Scholar 

  • Berkovic G, Shafir E (2012) Optical methods for distance and displacement measurements. Adv Opt Photon 4(4):441–471

    Article  Google Scholar 

  • Birch KP, Downs MJ (1994) Correction to the updated Edlen equation for the refractive index of air. Metrologia 31(4):315–316

    Article  Google Scholar 

  • Bobroff N (1993) Recent advances in displacement measuring interferometry. Meas Sci Technol 4(9):907–926

    Article  Google Scholar 

  • Chun BJ, Hyun S, Kim S, Kim S-W, Kim Y-J (2013) Frequency-comb-referenced multi-channel fiber laser for DWDM communication. Opt Express 21(24):29179–29185

    Article  Google Scholar 

  • Chun BJ, Kim Y-J, Kim S-W (2016) Inter-comb synchronization by mode-to-mode locking. Laser Phys Lett 13(8):085301

    Article  Google Scholar 

  • Ciddor PE (1996) Refractive index of air: new equations for the visible and near infrared. Appl Opt 35(9):1566–1573

    Article  Google Scholar 

  • Coddington I, Swann WC, Nenadovic L, Newbury NR (2009) Rapid and precise absolute distance measurements at long range. Nat Photonics 3(6):351–356

    Article  Google Scholar 

  • Dandliker R, Thalmann R, Prongue D (1988) Two-wavelength laser interferometry using superheterodyne detection. Opt Lett 13(5):339–341

    Article  Google Scholar 

  • Degnan JJ (1985) Satellite laser ranging: current status and future prospects. IEEE Trans Geosci Remote Sens GE-23(4):398–413

    Article  Google Scholar 

  • Demarest FC (1998) High-resolution, high-speed, low data age uncertainty, heterodyne displacement measuring interferometer electronics. Meas Sci Technol 9(7):1024–1030

    Article  Google Scholar 

  • van den Berg SA, Persijn ST, Kok GJP, Zeitouny MG, Bhattacharya N (2012) Many-wavelength interferometry with thousands of lasers for absolute distance measurement. Phys Rev Lett 108(18):183901

    Article  Google Scholar 

  • Diddams SA, Jones DJ, Ye J, Cundiff ST, Hall JL, Ranka JK, Windeler RS, Holzwarth R, Udem T, Hansch T-W (2000) Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Phys Rev Lett 84(22):5102–5105

    Article  Google Scholar 

  • Felder R (2005) Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003). Metrologia 42(4):323–325

    Article  Google Scholar 

  • Fujima I, Iwasaki S, Seta K (1998) High-resolution distance meter using optical intensity modulation at 28 GHz. Meas Sci Technol 9(7):1049–1052

    Article  Google Scholar 

  • Gao W, Kim S-W, Bosse H, Haitjema H, Chen YL, Lu XD, Knapp W, Weckenmann A, Estler WT, Kunzmann H (2015) Measurement technologies for precision positioning. CIRP Ann Manuf Technol 64(2):773–796

    Article  Google Scholar 

  • Giacomo P (1984) News from the BIPM. Metrologia 20(1):25–30

    Article  Google Scholar 

  • Han S, Kim Y-J, Kim S-W (2015) Parallel determination of absolute distances to multiple targets by time-of-flight measurement using femtosecond light pulses. Opt Express 23(20):25874–25882

    Article  Google Scholar 

  • Hartmann L, Meiners-Hagen K, Abou-Zeid A (2008) An absolute distance interferometer with two external cavity diode lasers. Meas Sci Technol 19(4):045307

    Article  Google Scholar 

  • Hyun S, Kim Y-J, Kim Y, Jin J, Kim S-W (2009) Absolute length measurement with the frequency comb of a femtosecond laser. Meas Sci Technol 20(9):095302

    Article  Google Scholar 

  • Hyun S, Kim Y-J, Kim S-W (2010) Absolute distance measurement using the frequency comb of a femtosecond laser. CIRP Ann Manuf Technol 59(1):555–558

    Article  Google Scholar 

  • Jang Y-S, Kim S-W (2017) Compensation of the refractive index of air in laser interferometer for distance measurement: a review. Int J Precis Eng Manuf 18(12):1881–1890

    Article  Google Scholar 

  • Jang Y-S, Wang G, Hyun S, Kang HJ, Chun BJ, Kim Y-J, Kim S-W (2016) Comb-referenced laser distance interferometer for industrial nanotechnology. Sci Rep 6:31770

    Article  Google Scholar 

  • Jin J, Kim Y-J, Kim Y, Kim S-W, Kang C-S (2006) Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser. Opt Express 14(13):5986–5974

    Article  Google Scholar 

  • Jin J, Kim Y-J, Kim Y, Kim S-W (2007) Absolute distance measurements using the optical comb of a femtosecond pulse laser. Int J Precis Eng Manuf 8(4):22–26

    Google Scholar 

  • Jones DJ, Diddams SA, Ranka JK, Stentz A, Windeler RS, Hall JL, Cundiff ST (2000) Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288:635–639

    Article  Google Scholar 

  • Joo K-N, Kim S-W (2006) Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser. Opt Express 14(13):5954–5960

    Article  Google Scholar 

  • Joo W-D, Kim S, Park J, Lee K, Lee J, Kim S, Kim Y-J, Kim S-W (2013) Femtosecond laser pulses for fast 3-D surface profilometry of microelectronic step-structures. Opt Express 21(13):15323–15334

    Article  Google Scholar 

  • Keller U (2003) Recent developments in compact ultrafast lasers. Nature 424(6950):831–838

    Article  Google Scholar 

  • Kim S-W (2009) Metrology: combs rule. Nat Photon 3:313–341

    Article  Google Scholar 

  • Kim J, Song Y (2016) Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications. Adv Opt Photon 8:465–540

    Article  Google Scholar 

  • Kim Y, Kim S, Kim Y-J, Hussein H, Kim S-W (2009a) Er-doped fiber frequency comb with mHz relative linewidth. Opt Express 17(14):11972–11977

    Article  Google Scholar 

  • Kim Y-J, Kim Y, Chun BJ, Hyun S, Kim S-W (2009b) All-fiber-based optical frequency generation from an Er-doped fiber femtosecond laser. Opt Express 17(13):10939–10945

    Article  Google Scholar 

  • Lee J, Kim Y-J, Lee K, Lee S, Kim S-W (2010) Time-of-flight measurement using femtosecond light pulses. Nat Photonics 4(10):716–720

    Article  Google Scholar 

  • Lee J, Lee K, Lee S, Kim S-W, Kim Y-J (2012) High precision laser ranging by time-of-flight measurement of femtosecond pulses. Meas Sci Technol 23(6):065203

    Article  Google Scholar 

  • Minosima K, Matsumoto H (2000) High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser. Appl Opt 39(30):5512–5517

    Article  Google Scholar 

  • Oh J-S, Kim S-W (2005) Femtosecond laser pulses for surface-profile metrology. Opt Lett 30(19):2650–2652

    Article  Google Scholar 

  • Quinn TJ (2003) Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001). Metrologia 40(2):103–133

    Article  MathSciNet  Google Scholar 

  • Salvadé Y, Schuhler N, Lévêque S, Floch SL (2008) High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source. Appl Opt 47(14):2715–2720

    Article  Google Scholar 

  • Schuhler N, Salvade Y, Leveque S, Dandliker R, Holzwarth R (2006) Frequency-comb-referenced two-wavelength source for absolute distance measurement. Opt Lett 31(21):3101–3103

    Article  Google Scholar 

  • Uttam D, Culshaw B (1985) Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique. J Lightwave Technol 3(5):971–977

    Article  Google Scholar 

  • Wang G, Jang Y-S, Hyun S, Chun BJ, Kang HJ, Yan S, Kim S-W, Kim Y-J (2015) Absolute positioning by multi-wavelength interferometry referenced to the frequency comb of a femtosecond laser. Opt Express 23(7):9121–9129

    Article  Google Scholar 

  • Xiaoli D, Katuo S (1998) High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry. Meas Sci Technol 9(7):1031–1035

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Research Foundation of the Republic of Korea (NRF-2012R1A3A1050386).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Woo Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kim, SW., Jang, YS., Park, J., Kim, W. (2019). Dimensional Metrology Using Mode-Locked Lasers. In: Gao, W. (eds) Metrology. Precision Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-10-4912-5_1-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4912-5_1-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4912-5

  • Online ISBN: 978-981-10-4912-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics