Skip to main content

Single-Cell Impedance Flow Cytometry

  • Living reference work entry
  • First Online:
Handbook of Single Cell Technologies

Abstract

This chapter reviews recent technical developments in the field of single-cell electrical property characterization. Firstly, three well-established characterization approaches including patch clamping, electrorotation, and dielectrophoresis are discussed and compared. Then, key developments of impedance flow cytometry, which are capable of high-throughput quantifying single-cell electrical properties, are presented. In addition, key cellular electrical properties quantified by these techniques are summarized and discussed. In the end, future research opportunities with technical innovations are indicated.

Hongyan Liang, Huiwen Tan, and Deyong Chen are Co-First Authors

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adams TNG, Turner PA, Janorkar AV, Zhao F, Minerick AR (2014) Characterizing the dielectric properties of human mesenchymal stem cells and the effects of charged elastin-like polypeptide copolymer treatment. Biomicrofluidics 8(5):054109

    Article  Google Scholar 

  • Archer S, Morgan H, Rixon FJ (1999) Electrorotation studies of baby hamster kidney fibroblasts infected with herpes simplex virus type 1. Biophys J 76(5):2833–2842

    Article  Google Scholar 

  • Arnold WM, Zimmermann U (1982) Rotating-field-induced rotation and measurement of the membrane capacitance of single mesophyll cells of Avena sativa. Zeitschrift Fur Naturforschung C J Biosci 37(10):908–915

    Article  Google Scholar 

  • Arnold WM, Zimmermann U (1988) Electro-rotation: development of a technique for dielectric measurements on individual cells and particles. J Electrost 21(2–3):151–191

    Article  Google Scholar 

  • Arnold WM, Wendt B, Zimmermann U, Korenstein R (1985) Rotation of a single swollen thylakoid vesicle in a rotating electric field. Electrical properties of the photosynthetic membrane and their modification by ionophores, lipophilic ions and pH. Biochim Biophys Acta Biomembr 813(1):117–131

    Article  Google Scholar 

  • Arnold WM et al (1987) Electrorotation of mouse oocytes – single-cell measurements of zone-intact and zone-free cells and of the isolated zona-pellucida. Biochim Biophys Acta 905(2):454–464

    Article  Google Scholar 

  • Asami K, Yamaguchi T (1993) Dielectric spectroscopy of plant protoplasts. Biophys J 63(6):1493–1499

    Article  Google Scholar 

  • Bahrieh G, Erdem M, Ozgur E, Gunduz U, Kulah H (2014) Assessment of effects of multi drug resistance on dielectric properties of K562 leukemic cells using electrorotation. RSC Adv 4(85):44879–44887

    Article  Google Scholar 

  • Becker FF, Wang XB, Huang Y, Pethig R, Vykoukal J, Gascoyne PR (1995) Separation of human breast cancer cells from blood by differential dielectric affinity. Proc Natl Acad Sci U S A 92(3):860–864

    Article  Google Scholar 

  • Berardi V, Aiello C, Bonincontro A, Risuleo G (2009) Alterations of the plasma membrane caused by murine polyomavirus proliferation: an electrorotation study. J Membr Biol 229(1):19

    Article  Google Scholar 

  • Broche LM, Labeed FH, Hughes MP (2005) Extraction of dielectric properties of multiple populations from dielectrophoretic collection spectrum data. Phys Med Biol 50(10):2267–2274

    Article  Google Scholar 

  • Broche LM, Bhadal N, Lewis MP, Porter S, Hughes MP, Labeed FH (2007) Early detection of oral cancer – is dielectrophoresis the answer. Oral Oncol 43(2):199–203

    Article  Google Scholar 

  • Castellarnau M, Errachid A, Madrid C, Juarez A, Samitier J (2006) Dielectrophoresis as a tool to characterize and differentiate isogenic mutants of Escherichia coli. Biophys J 91(10):3937–3945

    Article  Google Scholar 

  • Chen P, Gillis KD (2000) The noise of membrane capacitance measurements in the whole-cell recording configuration. Biophys J 79(4):2162–2170

    Article  Google Scholar 

  • Chen J, Xue C, Zhao Y, Chen D, Wu MH, Wang J (2015) Microfluidic impedance flow cytometry enabling high-throughput single-cell electrical property characterization. Int J Mol Sci 16(5):9804–9830

    Article  Google Scholar 

  • Cheung KC (2010) Microfluidic impedance-based flow cytometry. Cytometry A 77(7):648–666

    Article  Google Scholar 

  • Cheung K, Gawad S, Renaud P (2005) Impedance spectroscopy flow cytometry: on-chip label-free cell differentiation. Cytometry A 65A(2):124–132

    Article  Google Scholar 

  • Chin S, Hughes MP, Coley HM, Labeed FH (2006) Rapid assessment of early biophysical changes in K562 cells during apoptosis determined using dielectrophoresis. Int J Nanomedicine 1(3):333–337

    Google Scholar 

  • Chiu T-K et al (2017) A low-sample-loss microfluidic system for the quantification of size-independent cellular electrical property – its demonstration for the identification and characterization of circulating tumour cells (CTCs). Sensors Actuators B Chem 246(Suppl C):29–37

    Article  Google Scholar 

  • Cole KS (1928a) Electric impedance of suspensions of spheres. J Gen Physiol 12(1):29–36

    Article  Google Scholar 

  • Cole KS (1928b) Electric impedance of suspensions of arbacia eggs. J Gen Physiol 12(1):37–54

    Article  Google Scholar 

  • Cole KS (1932) Electric phase angle of cell membranes. J Gen Physiol 15(6):641–649

    Article  Google Scholar 

  • Cole KS, Curtis HJ (1938) Electric impedance of single marine eggs. J Gen Physiol 21(5):591

    Article  Google Scholar 

  • Coley HM, Labeed FH, Thomas H, Hughes MP (2007) Biophysical characterization of MDR breast cancer cell lines reveals the cytoplasm is critical in determining drug sensitivity. Biochim Biophys Acta 1770(4):601–608

    Article  Google Scholar 

  • Cristofanilli M, De GG, Zhang L, Hung MC, Gascoyne PR, Hortobagyi GN (2002) Automated electrorotation to reveal dielectric variations related to HER-2/neu overexpression in MCF-7 sublines. Clin Cancer Res 8(2):615–619

    Google Scholar 

  • Curtis HJ, Cole KS (1937) Transverse electric impedance of nitella. J Gen Physiol 21(2):189–201

    Article  Google Scholar 

  • Dalton C, Goater AD, Pethig R, Smith HV (2001) Viability of giardia intestinalis cysts and viability and sporulation state of cyclospora cayetanensis oocysts determined by electrorotation. Appl Environ Microbiol 67(2):586–590

    Article  Google Scholar 

  • De Gasperis G, Wang XB, Yang J, Becker FF, Gascoyne PRC (1998) Automated electrorotation: dielectric characterization of living cells by real-time motion estimation. Meas Sci Technol 9(3):518–529

    Article  Google Scholar 

  • Debus K, Hartmann J, Kilic G, Lindau M (1996) Influence of conductance changes on patch clamp capacitance measurements using a lock-in amplifier and limitations of the phase tracking technique. Biophys J 69(6):2808–2822

    Article  Google Scholar 

  • Deng Y-L, Kuo M-Y, Juang Y-J (2014) Development of flow through dielectrophoresis microfluidic chips for biofuel production: sorting and detection of microalgae with different lipid contents. Biomicrofluidics 8(6):064120

    Article  Google Scholar 

  • Donath E, Egger M, Pastushenko VP (1990) Dielectric behavior of the anion-exchange protein of human red blood cells: theoretical analysis and comparison to electrorotation data. J Electroanal Chem Interfacial Electrochem 23(3):337–360

    Article  Google Scholar 

  • Donnelly DF (1994) A novel method for rapid measurement of membrane resistance, capacitance, and access resistance. Biophys J 66(1):873–877

    Article  Google Scholar 

  • Du E, Ha S, Diez-Silva M, Dao M, Suresh S, Chandrakasan AP (2013) Electric impedance microflow cytometry for characterization of cell disease states. Lab Chip 13(19):3903–3909

    Article  Google Scholar 

  • Duncan L, Shelmerdine H, Hughes MP, Coley HM, Hubner Y, Labeed FH (2008) Dielectrophoretic analysis of changes in cytoplasmic ion levels due to ion channel blocker action reveals underlying differences between drug-sensitive and multidrug-resistant leukaemic cells. Phys Med Biol 53(2):N1–N7

    Article  Google Scholar 

  • Egger M, Donath E, Ziemer S, Glaser R (1986) Electrorotation – a new method for investigating membrane events during thrombocyte activation. Influence of drugs and osmotic pressure. Biochim Biophys Acta 861(1):122

    Article  Google Scholar 

  • Egger M, Donath E, Spangenberg P, Bimmler M, Glaser R, Till U (1988) Human platelet electrorotation change induced by activation: inducer specificity and correlation to serotonin release. Biochim Biophys Acta 972(3):265–276

    Google Scholar 

  • Fernandez JM, Neher E, Gomperts BD (1984) Capacitance measurements reveal stepwise fusion events in degranulating mast cells. Nature 312(5993):453–455

    Article  Google Scholar 

  • Franz D, Olsen HL, Klink O, Gimsa J (2017) Automated and manual patch clamp data of human induced pluripotent stem cell-derived dopaminergic neurons. Sci Data 4:170056

    Article  Google Scholar 

  • Fricke H (1924a) A mathematical treatment of the electrical conductivity of colloids and cell suspensions. J Gen Physiol 6(4):375–384

    Article  Google Scholar 

  • Fricke H (1924b) A mathematical treatment of the electric conductivity and capacity of disperse systems I. the electric conductivity of a suspension of homogeneous spheroids. Phys Rev 24(5):575–587

    Article  Google Scholar 

  • Fricke H (1925a) A mathematical treatment of the electric conductivity and capacity of disperse systems II. The capacity of a suspension of conducting spheroids surrounded by a non-conducting membrane for a current of low frequency. Phys Rev 26(5):678–681

    Article  Google Scholar 

  • Fricke H (1925b) The electric capacity of suspensions of red corpuscles of a dog. Phys Rev 26(5):682–687

    Article  Google Scholar 

  • Fricke H (1925c) The electric capacity of suspensions with special reference to blood. J Gen Physiol 9(2):137–152

    Article  Google Scholar 

  • Fricke H, Morse S (1925) The electric resistance and capacity of blood for frequencies between 800 and 4(1/2) million cycles. J Gen Physiol 9(2):153–167

    Article  Google Scholar 

  • Fuhr G, Kuzmin PI (1986) Behavior of cells in rotating electric fields with account to surface charges and cell structures. Biophys J 50(50):789–795

    Article  Google Scholar 

  • Fuhr G, Glaser R, Hagedorn R (1986) Rotation of dielectrics in a rotating electric high-frequency field – model experiments and theoretical explanation of the rotation effect of living cells. Biophys J 49(2):395–402

    Article  Google Scholar 

  • Gawad S, Schild L, Renaud P (2001) Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing. Lab Chip 1(1):76–82

    Article  Google Scholar 

  • Gawad S, Cheung K, Seger U, Bertsch A, Renaud P (2004) Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations. Lab Chip 4(3):241–251

    Article  Google Scholar 

  • Geier BM, Wendt B, Arnold WM, Zimmermann U (1987) The effect of mercuric-salts on the electrorotation of yeast-cells and comparison with a theoretical-model. Biochim Biophys Acta 900(1):45–55

    Article  Google Scholar 

  • Gentet LJ, Stuart GJ, Clements JD (2000) Direct measurement of specific membrane capacitance in neurons. Biophys J 79(1):314–320

    Article  Google Scholar 

  • Georgiewa R, Donath E, Gimsa J, Löwe U, Glaser R (1989) Ac-field-induced KCl leakage from human red cells at low ionic strengths: implications for electrorotation measurements. Bioelectrochem Bioenerg 22(3):255–270

    Article  Google Scholar 

  • Gimsa J (2001) A comprehensive approach to electro-orientation, electrodeformation, dielectrophoresis, and electrorotation of ellipsoidal particles and biological cells. Bioelectrochemistry 54(1):23–31

    Article  Google Scholar 

  • Gimsa J, Marszalek P, Loewe U, Tsong TY (1991) Dielectrophoresis and electrorotation of neurospora slime and murine myeloma cells. Biophys J 60(4):749–760

    Article  Google Scholar 

  • Gimsa J, Müller T, Schnelle T, Fuhr G (1996) Dielectric spectroscopy of single human erythrocytes at physiological ionic strength: dispersion of the cytoplasm. Biophys J 71(1):495

    Article  Google Scholar 

  • Goater AD, Pethig R (1998) Electrorotation and dielectrophoresis. Parasitology 117(Suppl):S177–S189

    Google Scholar 

  • Golowasch J (2009) Membrane capacitance measurements revisited: dependence of capacitance value on measurement method in nonisopotential neurons. J Neurophysiol 102(4):2161–2175

    Article  Google Scholar 

  • Graf J, Rupnik M, Zupancic G, Zorec R (1995) Osmotic swelling of hepatocytes increases membrane conductance but not membrane capacitance. Biophys J 68(4):1359–1363

    Article  Google Scholar 

  • Graham KA et al (2015) A dielectrophoretic method of discrimination between normal oral epithelium, and oral and oropharyngeal cancer in a clinical setting. Analyst 140(15):5198–5204

    Article  Google Scholar 

  • Guofeng Q, Wei W, Wei D, Fan Z, Sinclair AJ, Chatwin CR (2012) Bioimpedance analysis for the characterization of breast cancer cells in suspension. IEEE Trans Biomed Eng 59(8):2321–2329

    Article  Google Scholar 

  • Han X, van Berkel C, Gwyer J, Capretto L, Morgan H (2012) Microfluidic lysis of human blood for leukocyte analysis using single cell impedance cytometry. Anal Chem 84(2):1070–1075

    Article  Google Scholar 

  • Henslee EA et al (2016) Accurate quantification of apoptosis progression and toxicity using a dielectrophoretic approach. Analyst 141(23):6408–6415

    Article  Google Scholar 

  • Hoffman RA, Britt WB (1979) Flow-system measurement of cell impedance properties. J Histochem Cytochem 27(1):234

    Article  Google Scholar 

  • Hoffman RA, Johnson TS, Britt WB (1981) Flow cytometric electronic direct current volume and radiofrequency impedance measurements of single cells and particles. Cytometry 1(6):377–384

    Article  Google Scholar 

  • Holmes D, Morgan H (2010) Single cell impedance cytometry for identification and counting of CD4 T-cells in human blood using impedance labels. Anal Chem 82(4):1455–1461

    Article  Google Scholar 

  • Holmes D et al (2009) Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry. Lab Chip 9(20):2881–2889

    Article  Google Scholar 

  • Holzapfel C, Vienken J, Zimmermann U (1982) Rotation of cells in an alternating electric field theory and experimental proof. J Membr Biol 67(1):13–26

    Article  Google Scholar 

  • Holzel R (1997) Electrorotation of single yeast cells at frequencies between 100 Hz and 1.6 GHz. Biophys J 73(2):1103–1109

    Article  Google Scholar 

  • Holzel R (1999) Non-invasive determination of bacterial single cell properties by electrorotation. BBA-Mol Cell Res 1450(1):53–60

    Google Scholar 

  • Hu X, Arnold WM, Zimmermann U (1990) Alterations in the electrical properties of T and B lymphocyte membranes induced by mitogenic stimulation. Activation monitored by electro-rotation of single cells. Biochim Biophys Acta Biomembr 1021(2):191–200

    Article  Google Scholar 

  • Huang Y, Wang XB, Tame JA, Pethig R (1993) Electrokinetic behaviour of colloidal particles in travelling electric fields: studies using yeast cells. J Phys D Appl Phys 26(9):1528

    Article  Google Scholar 

  • Hughes MP (1998a) Computer-aided analysis of conditions for optimizing practical electrorotation. Phys Med Biol 43(12):3639–3648

    Article  Google Scholar 

  • Hughes MP (1998b) Computer-aided analyses of electric fields used in electrorotation studies. J Phys D Appl Phys 27(7):1564

    Article  Google Scholar 

  • Hughes MP, Wang XB, Becker FF, Gascoyne PRC, Pethig R (1994) Computer-aided analyses of electric-fields used in electrorotation studies. J Phys D Appl Phys 27(7):1564–1570

    Article  Google Scholar 

  • Ismail A, Hughes MP, Mulhall HJ, Oreffo RO, Labeed FH (2015) Characterization of human skeletal stem and bone cell populations using dielectrophoresis. J Tissue Eng Regen Med 9(2):162–168

    Article  Google Scholar 

  • Johnson SL, Thomas MV, Kros CJ (2002) Membrane capacitance measurement using patch clamp with integrated self-balancing lock-in amplifier. Pflugers Arch - Eur J Physiol 443(4):653–663

    Article  Google Scholar 

  • Joshi C, Fernandez JM (1988) Capacitance measurements. An analysis of the phase detector technique used to study exocytosis and endocytosis. Biophys J 53(6):885–892

    Article  Google Scholar 

  • Kakutani T, Shibatani S, Senda M (1993) Electrorotation of barley mesophyll protoplasts. Bioelectrochem Bioenerg 31(1):85–97

    Article  Google Scholar 

  • Kaler KV, Jones TB (1990) Dielectrophoretic spectra of single cells determined by feedback-controlled levitation. Biophys J 57(2):173–182

    Article  Google Scholar 

  • Kiesel M et al (1999) Swelling-activated pathways in human T-lymphocytes studied by cell volumetry and electrorotation. Biophys J 76(5):2833–2842

    Article  Google Scholar 

  • Kodandaramaiah SB, Franzesi GT, Chow BY, Boyden ES, Forest CR (2012) Automated whole-cell patch-clamp electrophysiology of neurons in vivo. Nat Methods 9(6):585–587

    Article  Google Scholar 

  • Kriegmaier M, Zimmermann M, Wolf K, Zimmermann U, Sukhorukov VL (2001) Dielectric spectroscopy of schizosaccharomyces pombe using electrorotation and electroorientation. Biochim Biophys Acta Gen Subj 1568(2):135–146

    Article  Google Scholar 

  • Kürschner M, Nielsen K, von Langen JR, Schenk WA, Zimmermann U, Sukhorukov VL (2000) Effect of fluorine substitution on the interaction of lipophilic ions with the plasma membrane of mammalian cells. Biophys J 79(3):1490

    Article  Google Scholar 

  • Labeed FH, Coley HM, Thomas H, Hughes MP (2003) Assessment of multidrug resistance reversal using dielectrophoresis and flow cytometry. Biophys J 85(3):2028–2034

    Article  Google Scholar 

  • Labeed FH, Coley HM, Hughes MP (2006) Differences in the biophysical properties of membrane and cytoplasm of apoptotic cells revealed using dielectrophoresis. Biochim Biophys Acta 1760(6):922–929

    Article  Google Scholar 

  • Labeed FH et al (2011) Biophysical characteristics reveal neural stem cell differentiation potential. PLoS One 6(9):e25458

    Article  Google Scholar 

  • Lannin T et al (2016) Automated electrorotation shows electrokinetic separation of pancreatic cancer cells is robust to acquired chemotherapy resistance, serum starvation, and EMT. Biomicrofluidics 10(6):064109

    Article  Google Scholar 

  • Liang X, Graham KA, Johannessen AC, Costea DE, Labeed FH (2014) Human oral cancer cells with increasing tumorigenic abilities exhibit higher effective membrane capacitance. Integr Biol 6(5):545–554

    Article  Google Scholar 

  • Liang W, Zhang K, Yang X, Liu L, Yu H, Zhang W (2015) Distinctive translational and self-rotational motion of lymphoma cells in an optically induced non-rotational alternating current electric field. Biomicrofluidics 9(1):014121

    Article  Google Scholar 

  • Liang W, Zhao Y, Liu L, Wang Y, Li WJ, Lee GB (2017) Determination of cell membrane capacitance and conductance via optically induced electrokinetics. Biophys J 113(7):1531–1539

    Article  Google Scholar 

  • Lindau M, Neher E (1988) Patch-clamp technique for time-resolved capacitance measurements in single cells. Pflugers Arch - Eur J Physiol 411(2):137–146

    Article  Google Scholar 

  • Lovelace RVE, Stout DG, Steponkus PL (1984) Protoplast rotation in a rotating electric field: the influence of cold acclimation. J Membr Biol 82(2):157–166

    Article  Google Scholar 

  • Meissner R, Joris P, Eker B, Bertsch A, Renaud P (2012) A microfluidic-based frequency-multiplexing impedance sensor (FMIS). Lab Chip 12(15):2712–2718

    Article  Google Scholar 

  • Memmel S et al (2014) Cell surface area and membrane folding in glioblastoma cell lines differing in PTEN and p53 status. PLoS One 9(1):e87052

    Article  Google Scholar 

  • Mernier G, Piacentini N, Tornay R, Buffi N, Renaud P (2011) Cell viability assessment by flow cytometry using yeast as cell model. Sensors Actuators B Chem 154(2):160–163

    Article  Google Scholar 

  • Mernier G, Hasenkamp W, Piacentini N, Renaud P (2012) Multiple-frequency impedance measurements in continuous flow for automated evaluation of yeast cell lysis. Sensors Actuators B Chem 170:2–6

    Article  Google Scholar 

  • Mietchen D, Schnelle T, Mller T, Hagedorn R, Fuhr G (2002) Automated dielectric single cell spectroscopy – temperature dependence of electrorotation. J Phys D Appl Phys 35(35):1258–1270

    Article  Google Scholar 

  • Morgan H, Sun T, Holmes D, Gawad S, Green NG (2007) Single cell dielectric spectroscopy. J Phys D Appl Phys 40(1):61–70

    Article  Google Scholar 

  • Mulhall HJ, Labeed FH, Kazmi B, Costea DE, Hughes MP, Lewis MP (2011) Cancer, pre-cancer and normal oral cells distinguished by dielectrophoresis. Anal Bioanal Chem 401(8):2455–2463

    Article  Google Scholar 

  • Mulhall HJ, Cardnell A, Hoettges KF, Labeed FH, Hughes MP (2015) Apoptosis progression studied using parallel dielectrophoresis electrophysiological analysis and flow cytometry. Integr Biol 7(11):1396–1401

    Article  Google Scholar 

  • Neef A, Heinemann C, Moser T (2007) Measurements of membrane patch capacitance using a software-based lock-in system. Pflugers Arch - Eur J Physiol 454(2):335–344

    Article  Google Scholar 

  • Neher E, Marty A (1982) Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci 79(21):6712–6716

    Article  Google Scholar 

  • Novak P, Zahradnik I (2006) Q-method for high-resolution, whole-cell patch-clamp impedance measurements using square wave stimulation. Ann Biomed Eng 34(7):1201–1212

    Article  Google Scholar 

  • O’Shaughnessy TJ, Kim YI (1995) A computer-based system for the measurement of membrane capacitance to monitor exocytosis in secretory cells. J Neurosci Methods 57(1):1–8

    Article  Google Scholar 

  • Pethig R, Talary MS (2007) Dielectrophoretic detection of membrane morphology changes in Jurkat T-cells undergoing etoposide-induced apoptosis. IET Nanobiotechnol 1(1):2–9

    Article  Google Scholar 

  • Pilwat G, Zimmermann U (1983) Rotation of a single cell in a discontinuous rotating electric field. Bioelectrochem Bioenerg 10(1):155–162

    Article  Google Scholar 

  • Reuss OR et al (2002) Interaction of fluorinated lipophilic ions with the plasma membrane of mammalian cells studied by electrorotation and dielectrophoresis. J Electrost 56(4):419–434

    Article  Google Scholar 

  • Rituper B (2013) High-resolution membrane capacitance measurements for the study of exocytosis and endocytosis. Nat Protoc 8(6):1169–1183

    Article  Google Scholar 

  • Rohlicek V, Schmid A (1994) Dual-frequency method for synchronous measurement of cell capacitance, membrane conductance and access resistance on single cells. Pflugers Arch - Eur J Physiol 428(1):30–38

    Article  Google Scholar 

  • Saboktakin Rizi B, Braasch K, Salimi E, Butler M, Bridges GE, Thomson DJ (2014) Monitoring the dielectric response of single cells following mitochondrial adenosine triphosphate synthase inhibition by oligomycin using a dielectrophoretic cytometer. Biomicrofluidics 8(6):064114

    Article  Google Scholar 

  • Sakaba T, Hazama A, Maruyama Y (2012) Patch-clamp capacitance measurements. In: Patch clamp techniques: from beginning to advanced protocols. Springer, Tokyo, pp 277–286

    Chapter  Google Scholar 

  • Sancho M, Martinez G, Munoz S, Sebastian JL, Pethig R (2010) Interaction between cells in dielectrophoresis and electrorotation experiments. Biomicrofluidics 4(2):022802

    Article  Google Scholar 

  • Schwan HP (1957) Electrical properties of tissue and cell suspensions. Adv Biol Med Phys 5:147–209

    Article  Google Scholar 

  • Schwan HP (1968) Electrode polarization impedance and measurements in biological materials. Ann N Y Acad Sci 148(1):191–209

    Article  Google Scholar 

  • Shaker M, Colella L, Caselli F, Bisegna P, Renaud P (2014) An impedance-based flow microcytometer for single cell morphology discrimination. Lab Chip 2014(14):2548–2555

    Article  Google Scholar 

  • Song H et al (2013) A microfluidic impedance flow cytometer for identification of differentiation state of stem cells. Lab Chip 13(12):2300–2310

    Article  Google Scholar 

  • Sudsiri J, Wachner D, Gimsa J (2007) On the temperature dependence of the dielectric membrane properties of human red blood cells. Bioelectrochemistry 70(1):134–140

    Article  Google Scholar 

  • Sukhorukov VL, Zimmermann U (1996) Electrorotation of erythrocytes treated with dipicrylamine: mobile charges within the membrane show their “signature” in rotational spectra. J Membr Biol 153(2):161–169

    Article  Google Scholar 

  • Sukhorukov VL, Benkert R, Obermeyer G, Bentrup F, Zimmermann U (1998) Electrorotation of isolated generative and vegetative cells, and of intact pollen grains of Lilium longiflorum. J Membr Biol 161(1):21

    Article  Google Scholar 

  • Taruvai Kalyana Kumar R, Liu S, Minna JD, Prasad S (2016) Monitoring drug induced apoptosis and treatment sensitivity in non-small cell lung carcinoma using dielectrophoresis. Biochim Biophys Acta 1860(9):1877–1883

    Article  Google Scholar 

  • Vahey MD, Voldman J (2009) High-throughput cell and particle characterization using isodielectric separation. Anal Chem 81(7):2446–2455

    Article  Google Scholar 

  • Vaillier C, Honegger T, Kermarrec F, Gidrol X, Peyrade D (2014) Comprehensive analysis of human cells motion under an irrotational ac electric field in an electro-microfluidic chip. PLoS One 9(4):e95231

    Article  Google Scholar 

  • Valero A, Braschler T, Renaud P (2010) A unified approach to dielectric single cell analysis: impedance and dielectrophoretic force spectroscopy. Lab Chip 10(17):2216–2225

    Article  Google Scholar 

  • Velugotla S et al (2012) Dielectrophoresis based discrimination of human embryonic stem cells from differentiating derivatives. Biomicrofluidics 6(4):44113

    Article  Google Scholar 

  • Vykoukal DM, Gascoyne PR, Vykoukal J (2009) Dielectric characterization of complete mononuclear and polymorphonuclear blood cell subpopulations for label-free discrimination. Integr Biol 1(7):477–484

    Article  Google Scholar 

  • Wang XB, Huang Y, Gascoyne PR, Becker FF, Holzel R, Pethig R (1994) Changes in Friend murine erythroleukaemia cell membranes during induced differentiation determined by electrorotation. Biochim Biophys Acta 1193(2):330–344

    Article  Google Scholar 

  • Wang J, Sukhorukov VL, Djuzenova CS, Zimmermann U, Müller T, Fuhr G (1997) Electrorotational spectra of protoplasts generated from the giant marine alga Valonia utricularis. Protoplasma 196(3–4):123–134

    Article  Google Scholar 

  • Wang X, Becker FF, Gascoyne PR (2002) Membrane dielectric changes indicate induced apoptosis in HL-60 cells more sensitively than surface phosphatidylserine expression or DNA fragmentation. Biochim Biophys Acta 1564(2):412–420

    Article  Google Scholar 

  • Wang X, Becker FF, Gascoyne PR (2010) The fractal dimension of cell membrane correlates with its capacitance: a new fractal single-shell model. Chaos 20(4):043133

    Article  Google Scholar 

  • Wang K et al (2017) Membrane capacitance of thousands of single white blood cells. J R Soc Interface 14(137). https://doi.org/10.1098/rsif.2017.0717

    Article  Google Scholar 

  • Watkins NN et al (2013) Microfluidic CD4+ and CD8+ T lymphocyte counters for point-of-care HIV diagnostics using whole blood. Sci Transl Med 5(214):214ra170

    Article  Google Scholar 

  • White WE, Hooper SL (2013) Contamination of current-clamp measurement of neuron capacitance by voltage-dependent phenomena. J Neurophysiol 110(1):257

    Article  Google Scholar 

  • Xu Y, Xie X, Duan Y, Wang L, Cheng Z, Cheng J (2016) A review of impedance measurements of whole cells. Biosens Bioelectron 77:824–836

    Article  Google Scholar 

  • Yang J, Huang Y, Wang X, Wang XB, Becker FF, Gascoyne PRC (1999) Dielectric properties of human leukocyte subpopulations determined by electrorotation as a cell separation criterion. Biophys J 76(6):3307–3314

    Article  Google Scholar 

  • Zhang H, Qu A, Luo J, Luo J (2010) Error analysis of Cm measurement under the whole-cell patch-clamp recording. J Neurosci Methods 185(2):307–314

    Article  Google Scholar 

  • Zhao Y et al (2013a) A microfluidic system enabling continuous characterization of specific membrane capacitance and cytoplasm conductivity of single cells in suspension. Biosens Bioelectron 43C:304–307

    Article  Google Scholar 

  • Zhao Y et al (2013b) A microfluidic system for cell type classification based on cellular size-independent electrical properties. Lab Chip 13(12):2272–2277

    Article  Google Scholar 

  • Zhao Y et al (2014) Tumor cell characterization and classification based on cellular specific membrane capacitance and cytoplasm conductivity. Biosens Bioelectron 57:245–253

    Article  Google Scholar 

  • Zhao Y et al (2016) Electrical property characterization of neural stem cells in differentiation. PLoS One 11(6):e0158044

    Article  Google Scholar 

  • Zhao Y et al (2018) Development of microfluidic impedance cytometry enabling the quantification of specific membrane capacitance and cytoplasm conductivity from 100,000 single cells. Biosens Bioelectron 111:138–143

    Article  Google Scholar 

  • Zhou XF, Burt JPH, Pethig R (1998) Automatic cell electrorotation measurements: studies of the biological effects of low-frequency magnetic fields and of heat shock. Phys Med Biol 43(5):1075–1090

    Article  Google Scholar 

  • Zhou T, Ming Y, Perry SF, Tatic-Lucic S (2016) Estimation of the physical properties of neurons and glial cells using dielectrophoresis crossover frequency. J Biol Phys 42(4):571–586

    Article  Google Scholar 

  • Ziervogel H, Glaser R, Schadow D, Heymann S (1986) Electrorotation of lymphocytes–the influence of membrane events and nucleus. Biosci Rep 6(11):973–982

    Article  Google Scholar 

  • Zimmermann U, Vienken J, Pilwat G (1981) Rotation of cells in an alternating electric field: the occurrence of a resonance frequency. Zeitschrift Fur Naturforschung C J Biosci 36(1–2):173–177

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge financial supports from the National Natural Science Foundation of China (Grant No. 61431019, 61671430), Chinese Academy of Sciences Key Project Targeting Cutting-Edge Scientific Problems (QYZDB-SSW-JSC011), Instrument Development Program, Youth Innovation Promotion Association and Interdisciplinary Innovation Team of Chinese Academy of Sciences, and Instrument Development Program of Beijing Municipal Science and Technology Commission (Z181100009518001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junbo Wang , Jian Chen or Min-Hsien Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Liang, H., Tan, H., Chen, D., Wang, J., Chen, J., Wu, MH. (2019). Single-Cell Impedance Flow Cytometry. In: Santra, T., Tseng, FG. (eds) Handbook of Single Cell Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-10-4857-9_7-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4857-9_7-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4857-9

  • Online ISBN: 978-981-10-4857-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics