Skip to main content

Biochemical Analysis of Secreted Molecules by Individual Cells

  • Living reference work entry
  • First Online:
Handbook of Single Cell Technologies

Abstract

Secreted proteins and metabolites are key components of functional homeostasis and organize individual cells into tissues and organisms. Various secreted molecules display altered profiles in health and disease, making them suitable biological markers for disease detection and classification. Their impact on homeostasis and tissues, inducing, controlling, and exerting functionality, also renders secreted proteins valid drug candidates or therapeutic targets. Hence, the study of secreted molecules offers a valid approach towards the understanding and treatment of various diseases, disorders, and syndromes. However, the interest in these products goes far beyond fundamental and biomedical research, with many industries relying on secreted, cellular products. In recent years, the analysis of complex cellular systems at the single-cell level has gained traction. Such a resolved analysis allows the investigation and exploitation of cellular heterogeneity, and the identification of rare active cells and subpopulations of interest. Here, secretion is no exception. This chapter provides an introduction to secretion as well as a discussion and comparison of different methods allowing secretion analysis of individual cells, ranging from enzyme-linked immunosorbent assay (ELISA) related immunoassays to cytometry-based methods, microfluidic systems including micro- and nano-well, microchamber and droplet-based assays, and lastly novel, label-free optical methods. These methods vary in throughput, multiplexing capacity, complexity, and the possibility of cell recovery, criteria used to contrast the different technologies, enabling the reader to choose a suitable analytical strategy for their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Armbrecht L, Müller RS, Nikoloff J, Dittrich PS (2019) Single-cell protein profiling in microchambers with barcoded beads. Microsyst Nanoeng 5:55

    Article  Google Scholar 

  • Bailey RC, Kwong GA, Radu CG, Witte ON, Heath JR (2007) DNA-encoded antibody libraries: a unified platform for multiplexed cell sorting and detection of genes and proteins. J Am Chem Soc 129:1959–1967

    Article  Google Scholar 

  • Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R, Lou X, Pavlov S, Vorobiev S, Dick JE, Tanner SD (2009) Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem 81:6813–6822

    Article  Google Scholar 

  • Braesch-Andersen S, Paulie S, Smedman C, Mia S, Kumagai-Braesch M (2013) ApoE production in human monocytes and its regulation by inflammatory cytokines. PLoS One 8:e79908

    Article  Google Scholar 

  • Brandi J, Dalla Pozza E, Dando I, Biondani G, Robotti E, Jenkins R, Elliott V, Park K, Marengo E, Costello E, Scarpa A, Palmieri M, Cecconi D (2016) Secretome protein signature of human pancreatic cancer stem-like cells. J Proteome 136:1–12

    Article  Google Scholar 

  • Brosterhus H, Brings S, Leyendeckers H, Manz RA, Miltenyi S, Radbruch A, Assenmacher M, Schmitz J (1999) Enrichment and detection of live antigen-specific CD4(+) and CD8(+) T cells based on cytokine secretion. Eur J Immunol 29:4053–4059

    Article  Google Scholar 

  • Chen Z, Chen JJ, Fan R (2019) Single-cell protein secretion detection and profiling. Annu Rev Anal Chem (Palo Alto, Calif) 12:431–449

    Article  Google Scholar 

  • Choi J, Love KR, Gong Y, Gierahn TM, Love JC (2011) Immuno-hybridization chain reaction for enhancing detection of individual cytokine-secreting human peripheral mononuclear cells. Anal Chem 83:6890–6895

    Article  Google Scholar 

  • Cossarizza A, Chang HD, Radbruch A, Akdis M, Andra I, Annunziato F, Bacher P, Barnaba V, Battistini L, Bauer WM, Baumgart S, Becher B, Beisker W, Berek C, Blanco A, Borsellino G, Boulais PE, Brinkman RR, Buscher M, Busch DH, Bushnell TP, Cao X, Cavani A, Chattopadhyay PK, Cheng Q, Chow S, Clerici M, Cooke A, Cosma A, Cosmi L, Cumano A, Dang VD, Davies D, De Biasi S, Del Zotto G, Della Bella S, Dellabona P, Deniz G, Dessing M, Diefenbach A, Di Santo J, Dieli F, Dolf A, Donnenberg VS, Dorner T, Ehrhardt GRA, Endl E, Engel P, Engelhardt B, Esser C, Everts B, Dreher A, Falk CS, Fehniger TA, Filby A, Fillatreau S, Follo M, Forster I, Foster J, Foulds GA, Frenette PS, Galbraith D, Garbi N, Garcia-Godoy MD, Geginat J, Ghoreschi K, Gibellini L, Goettlinger C, Goodyear CS, Gori A, Grogan J, Gross M, Grutzkau A, Grummitt D, Hahn J, Hammer Q, Hauser AE, Haviland DL, Hedley D, Herrera G, Herrmann M, Hiepe F, Holland T, Hombrink P, Houston JP, Hoyer BF, Huang B, Hunter CA, Iannone A, Jack HM, Javega B, Jonjic S, Juelke K, Jung S, Kaiser T, Kalina T, Keller B, Khan S, Kienhofer D, Kroneis T, Kunkel D, Kurts C, Kvistborg P, Lannigan J, Lantz O, Larbi A, LeibundGut-Landmann S, Leipold MD, Levings MK, Litwin V, Liu Y, Lohoff M, Lombardi G, Lopez L, Lovett-Racke A, Lubberts E, Ludewig B, Lugli E, Maecker HT, Martrus G, Matarese G, Maueroder C, McGrath M, McInnes I, Mei HE, Melchers F, Melzer S, Mielenz D, Mills K, Mirrer D, Mjosberg J, Moore J, Moran B, Moretta A, Moretta L, Mosmann TR, Muller S, Muller W, Munz C, Multhoff G, Munoz LE, Murphy KM, Nakayama T, Nasi M, Neudorfl C, Nolan J, Nourshargh S, O’Connor JE, Ouyang W, Oxenius A, Palankar R, Panse I, Peterson P, Peth C, Petriz J, Philips D, Pickl W, Piconese S, Pinti M, Pockley AG, Podolska MJ, Pucillo C, Quataert SA, Radstake T, Rajwa B, Rebhahn JA, Recktenwald D, Remmerswaal EBM, Rezvani K, Rico LG, Robinson JP, Romagnani C, Rubartelli A, Ruckert B, Ruland J, Sakaguchi S, Sala-de-Oyanguren F, Samstag Y, Sanderson S, Sawitzki B, Scheffold A, Schiemann M, Schildberg F, Schimisky E, Schmid SA, Schmitt S, Schober K, Schuler T, Schulz AR, Schumacher T, Scotta C, Shankey TV, Shemer A, Simon AK, Spidlen J, Stall AM, Stark R, Stehle C, Stein M, Steinmetz T, Stockinger H, Takahama Y, Tarnok A, Tian Z, Toldi G, Tornack J, Traggiai E, Trotter J, Ulrich H, van der Braber M, van Lier RAW, Veldhoen M, Vento-Asturias S, Vieira P, Voehringer D, Volk HD, von Volkmann K, Waisman A, Walker R, Ward MD, Warnatz K, Warth S, Watson JV, Watzl C, Wegener L, Wiedemann A, Wienands J, Willimsky G, Wing J, Wurst P, Yu L, Yue A, Zhang Q, Zhao Y, Ziegler S, Zimmermann J (2017) Guidelines for the use of flow cytometry and cell sorting in immunological studies. Eur J Immunol 47:1584–1797

    Article  Google Scholar 

  • Czerkinsky CC, Nilsson LA, Nygren H, Ouchterlony O, Tarkowski A (1983) A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J Immunol Methods 65:109–121

    Article  Google Scholar 

  • Del Ben F, Turetta M, Celetti G, Piruska A, Bulfoni M, Cesselli D, Huck WT, Scoles G (2016) A method for detecting circulating tumor cells based on the measurement of single-cell metabolism in droplet-based microfluidics. Angew Chem Int Ed Engl 55:8581–8584

    Article  Google Scholar 

  • Dhar M, Lam JN, Walser T, Dubinett SM, Rettig MB, Di Carlo D (2018) Functional profiling of circulating tumor cells with an integrated vortex capture and single-cell protease activity assay. Proc Natl Acad Sci U S A 115:9986–9991

    Article  Google Scholar 

  • Dimou E, Nickel W (2018) Unconventional mechanisms of eukaryotic protein secretion. Curr Biol 28:R406–Rr10

    Article  Google Scholar 

  • Dranoff G (2004) Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer 4:11–22

    Article  Google Scholar 

  • Eyer K, Kuhn P, Hanke C, Dittrich PS (2012) A microchamber array for single cell isolation and analysis of intracellular biomolecules. Lab Chip 12:765–772

    Article  Google Scholar 

  • Eyer K, Doineau RCL, Castrillon CE, Briseno-Roa L, Menrath V, Mottet G, England P, Godina A, Brient-Litzler E, Nizak C, Jensen A, Griffiths AD, Bibette J, Bruhns P, Baudry J (2017) Single-cell deep phenotyping of IgG-secreting cells for high-resolution immune monitoring. Nat Biotechnol 35:977–982

    Article  Google Scholar 

  • Fitzgerald W, Grivel JC (2013) A universal nanoparticle cell secretion capture assay. Cytometry A 83:205–211

    Article  Google Scholar 

  • Gerard A, Woolfe A, Mottet G, Reichen M, Castrillon C, Menrath V, Ellouze S, Poitou A, Doineau R, Briseno-Roa L, Canales-Herrerias P, Mary P, Rose G, Ortega C, Delince M, Essono S, Jia B, Iannascoli B, Richard-Le Goff O, Kumar R, Stewart SN, Pousse Y, Shen B, Grosselin K, Saudemont B, Sautel-Caille A, Godina A, McNamara S, Eyer K, Millot GA, Baudry J, England P, Nizak C, Jensen A, Griffiths AD, Bruhns P, Brenan C (2020) High-throughput single-cell activity-based screening and sequencing of antibodies using droplet microfluidics. Nat Biotechnol 38:715–721

    Google Scholar 

  • Gillardon F, Schmid R, Draheim H (2012) Parkinson’s disease-linked leucine-rich repeat kinase 2(R1441G) mutation increases proinflammatory cytokine release from activated primary microglial cells and resultant neurotoxicity. Neuroscience 208:41–48

    Article  Google Scholar 

  • Han Q, Bradshaw EM, Nilsson B, Hafler DA, Love JC (2010) Multidimensional analysis of the frequencies and rates of cytokine secretion from single cells by quantitative microengraving. Lab Chip 10:1391–1400

    Article  Google Scholar 

  • Han Q, Bagheri N, Bradshaw EM, Hafler DA, Lauffenburger DA, Love JC (2012) Polyfunctional responses by human T cells result from sequential release of cytokines. Proc Natl Acad Sci U S A 109:1607–1612

    Article  Google Scholar 

  • Han X, Liu K, Sun C (2019) Plasmonics for biosensing. Materials 12:1411. https://doi.org/10.3390/ma12091411

  • Hovdenak N, Haram K (2012) Influence of mineral and vitamin supplements on pregnancy outcome. Eur J Obstet Gynecol Reprod Biol 164:127–132

    Article  Google Scholar 

  • Hughes AJ, Spelke DP, Xu Z, Kang CC, Schaffer DV, Herr AE (2014) Single-cell western blotting. Nat Methods 11:749–755

    Article  Google Scholar 

  • Jahnmatz P, Sundling C, Makower B, Sondén K, Färnert A, Ahlborg N (2020) Multiplex analysis of antigen-specific memory B cells in humans using reversed B-cell FluoroSpot. J Immunol Methods 478:112715

    Article  Google Scholar 

  • Janetzki S, Rabin R (2015) Enzyme-linked immunospot (ELISpot) for single-cell analysis. Methods Mol Biol 1346:27–46

    Article  Google Scholar 

  • Janetzki S, Rueger M, Dillenbeck T (2014) Stepping up ELISpot: multi-level analysis in FluoroSpot assays. Cell 3:1102–1115

    Article  Google Scholar 

  • Jin A, Ozawa T, Tajiri K, Obata T, Kishi H, Muraguchi A (2011) Rapid isolation of antigen-specific antibody-secreting cells using a chip-based immunospot array. Nat Protoc 6:668–676

    Article  Google Scholar 

  • Jung T, Schauer U, Heusser C, Neumann C, Rieger C (1993) Detection of intracellular cytokines by flow cytometry. J Immunol Methods 159:197–207

    Article  Google Scholar 

  • Junkin M, Kaestli AJ, Cheng Z, Jordi C, Albayrak C, Hoffmann A, Tay S (2016) High-content quantification of single-cell immune dynamics. Cell Rep 15:411–422

    Article  Google Scholar 

  • Kesa G, Larsson PH, Ahlborg N, Axelsson B (2012) Comparison of ELISpot and FluoroSpot in the analysis of swine flu-specific IgG and IgA secretion by in vivo activated human B cells. Cell 1:27–34

    Article  Google Scholar 

  • Kida A, Iijima M, Niimi T, Maturana AD, Yoshimoto N, Kuroda S (2013) Cell surface-fluorescence immunosorbent assay for real-time detection of hybridomas with efficient antibody secretion at the single-cell level. Anal Chem 85:1753–1759

    Article  Google Scholar 

  • Konry T, Dominguez-Villar M, Baecher-Allan C, Hafler DA, Yarmush ML (2011) Droplet-based microfluidic platforms for single T cell secretion analysis of IL-10 cytokine. Biosens Bioelectron 26:2707–2710

    Article  Google Scholar 

  • Konry T, Golberg A, Yarmush M (2013) Live single cell functional phenotyping in droplet nano-liter reactors. Sci Rep 3:3179

    Article  Google Scholar 

  • Labib M, Kelley SO (2020) Single-cell analysis targeting the proteome. Nat Rev Chem 4:143–158

    Article  Google Scholar 

  • Li X, Soler M, Szydzik C, Khoshmanesh K, Schmidt J, Coukos G, Mitchell A, Altug H (2018) Label-free optofluidic nanobiosensor enables real-time analysis of single-cell cytokine secretion. Small 14:e1800698

    Article  Google Scholar 

  • Liechti T, Roederer M (2019) OMIP-060: 30-parameter flow cytometry panel to assess T cell effector functions and regulatory T cells. Cytometry A 95:1129–1134

    Article  Google Scholar 

  • Ling C, Del Guerra S, Lupi R, Ronn T, Granhall C, Luthman H, Masiello P, Marchetti P, Groop L, Del Prato S (2008) Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia 51:615–622

    Article  Google Scholar 

  • Liu Y, Singh AK (2013) Microfluidic platforms for single-cell protein analysis. J Lab Autom 18:446–454

    Article  Google Scholar 

  • Love JC, Ronan JL, Grotenbreg GM, van der Veen AG, Ploegh HL (2006) A microengraving method for rapid selection of single cells producing antigen-specific antibodies. Nat Biotechnol 24:703–707

    Article  Google Scholar 

  • Lovelace P, Maecker HT (2018) Multiparameter intracellular cytokine staining. Methods Mol Biol 1678:151–166

    Article  Google Scholar 

  • Lu Y, Chen JJ, Mu L, Xue Q, Wu Y, Wu PH, Li J, Vortmeyer AO, Miller-Jensen K, Wirtz D, Fan R (2013) High-throughput secretomic analysis of single cells to assess functional cellular heterogeneity. Anal Chem 85:2548–2556

    Article  Google Scholar 

  • Lu Y, Xue Q, Eisele MR, Sulistijo ES, Brower K, Han L, Amir el AD, Pe’er D, Miller-Jensen K, Fan R (2015) Highly multiplexed profiling of single-cell effector functions reveals deep functional heterogeneity in response to pathogenic ligands. Proc Natl Acad Sci U S A 112:E607–E615

    Article  Google Scholar 

  • Ma C, Fan R, Ahmad H, Shi Q, Comin-Anduix B, Chodon T, Koya RC, Liu CC, Kwong GA, Radu CG, Ribas A, Heath JR (2011) A clinical microchip for evaluation of single immune cells reveals high functional heterogeneity in phenotypically similar T cells. Nat Med 17:738–743

    Article  Google Scholar 

  • Maecker HT, Harari A (2015) Immune monitoring technology primer: flow and mass cytometry. J Immunother Cancer 3:44

    Article  Google Scholar 

  • Manz R, Assenmacher M, Pfluger E, Miltenyi S, Radbruch A (1995) Analysis and sorting of live cells according to secreted molecules, relocated to a cell-surface affinity matrix. Proc Natl Acad Sci U S A 92:1921–1925

    Article  Google Scholar 

  • Mazutis L, Gilbert J, Ung WL, Weitz DA, Griffiths AD, Heyman JA (2013) Single-cell analysis and sorting using droplet-based microfluidics. Nat Protoc 8:870–891

    Article  Google Scholar 

  • McDonald MP, Gemeinhardt A, Konig K, Piliarik M, Schaffer S, Volkl S, Aigner M, Mackensen A, Sandoghdar V (2018) Visualizing single-cell secretion dynamics with single-protein sensitivity. Nano Lett 18:513–519

    Article  Google Scholar 

  • Mongersun A, Smeenk I, Pratx G, Asuri P, Abbyad P (2016) Droplet microfluidic platform for the determination of single-cell lactate release. Anal Chem 88:3257–3263

    Article  Google Scholar 

  • Mulukutla BC, Yongky A, Grimm S, Daoutidis P, Hu WS (2015) Multiplicity of steady states in glycolysis and shift of metabolic state in cultured mammalian cells. PLoS One 10:e0121561

    Article  Google Scholar 

  • Murphy TW, Zhang Q, Naler LB, Ma S, Lu C (2017) Recent advances in the use of microfluidic technologies for single cell analysis. Analyst 143:60–80

    Article  Google Scholar 

  • Ogunniyi AO, Story CM, Papa E, Guillen E, Love JC (2009) Screening individual hybridomas by microengraving to discover monoclonal antibodies. Nat Protoc 4:767–782

    Article  Google Scholar 

  • Ornatsky O, Bandura D, Baranov V, Nitz M, Winnik MA, Tanner S (2010) Highly multiparametric analysis by mass cytometry. J Immunol Methods 361:1–20

    Article  Google Scholar 

  • Papalexi E, Satija R (2018) Single-cell RNA sequencing to explore immune cell heterogeneity. Nat Rev Immunol 18:35–45

    Article  Google Scholar 

  • Qiu L, Wimmers F, Weiden J, Heus HA, Tel J, Figdor CG (2017) A membrane-anchored aptamer sensor for probing IFNgamma secretion by single cells. Chem Commun (Camb) 53:8066–8069

    Article  Google Scholar 

  • Rabouille C (2017) Pathways of unconventional protein secretion. Trends Cell Biol 27:230–240

    Article  Google Scholar 

  • Rugbjerg P, Sommer MOA (2019) Overcoming genetic heterogeneity in industrial fermentations. Nat Biotechnol 37:869–876

    Article  Google Scholar 

  • Salerno F, Engels S, van den Biggelaar M, van Alphen FPJ, Guislain A, Zhao W, Hodge DL, Bell SE, Medema JP, von Lindern M, Turner M, Young HA, Wolkers MC (2018) Translational repression of pre-formed cytokine-encoding mRNA prevents chronic activation of memory T cells. Nat Immunol 19:828–837

    Article  Google Scholar 

  • Saletti G, Cuburu N, Yang JS, Dey A, Czerkinsky C (2013) Enzyme-linked immunospot assays for direct ex vivo measurement of vaccine-induced human humoral immune responses in blood. Nat Protoc 8:1073–1087

    Article  Google Scholar 

  • Secchi G (2008) Role of protein in cosmetics. Clin Dermatol 26:321–325

    Article  Google Scholar 

  • Shembekar N, Chaipan C, Utharala R, Merten CA (2016) Droplet-based microfluidics in drug discovery, transcriptomics and high-throughput molecular genetics. Lab Chip 16:1314–1331

    Article  Google Scholar 

  • Shembekar N, Hu H, Eustace D, Merten CA (2018) Single-cell droplet microfluidic screening for antibodies specifically binding to target cells. Cell Rep 22:2206–2215

    Article  Google Scholar 

  • Sinha N, Subedi N, Tel J (2018) Integrating immunology and microfluidics for single immune cell analysis. Front Immunol 9:2373

    Article  Google Scholar 

  • Spitzer MH, Nolan GP (2016) Mass cytometry: single cells, many features. Cell 165:780–791

    Article  Google Scholar 

  • Stahlberg A, Kubista M, Aman P (2011) Single-cell gene-expression profiling and its potential diagnostic applications. Expert Rev Mol Diagn 11:735–740

    Article  Google Scholar 

  • Stiefel P, Mauerhofer S, Schneider J, Maniura-Weber K, Rosenberg U, Ren Q (2016) Enzymes enhance biofilm removal efficiency of cleaners. Antimicrob Agents Chemother 60:3647–3652

    Article  Google Scholar 

  • Sukovich DJ, Kim SC, Ahmed N, Abate AR (2017) Bulk double emulsification for flow cytometric analysis of microfluidic droplets. Analyst 142:4618–4622

    Article  Google Scholar 

  • Taylor RW, Sandoghdar V (2019) Interferometric scattering (iSCAT) microscopy and related techniques. In: Astratov V (ed) Label-free super-resolution microscopy. Springer, Cham

    Google Scholar 

  • Uhlén M, Karlsson MJ, Hober A, Svensson AS, Scheffel J, Kotol D, Zhong W, Tebani A, Strandberg L, Edfors F, Sjöstedt E, Mulder J, Mardinoglu A, Berling A, Ekblad S, Dannemeyer M, Kanje S, Rockberg J, Lundqvist M, Malm M, Volk AL, Nilsson P, Månberg A, Dodig-Crnkovic T, Pin E, Zwahlen M, Oksvold P, von Feilitzen K, Häussler RS, Hong MG, Lindskog C, Ponten F, Katona B, Vuu J, Lindström E, Nielsen J, Robinson J, Ayoglu B, Mahdessian D, Sullivan D, Thul P, Danielsson F, Stadler C, Lundberg E, Bergström G, Gummesson A, Voldborg BG, Tegel H, Hober S, Forsström B, Schwenk JM, Fagerberg L, Sivertsson Å (2019) The human secretome. Sci Signal 12. https://doi.org/10.1126/scisignal.aaz0274

  • Walenta S, Mueller-Klieser WF (2004) Lactate: mirror and motor of tumor malignancy. Semin Radiat Oncol 14:267–274

    Article  Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  Google Scholar 

  • Woronoff G, Nghe P, Baudry J, Boitard L, Braun E, Griffiths AD, Bibette J (2020) Metabolic cost of rapid adaptation of single yeast cells. Proc Natl Acad Sci U S A 117:10660–10666

    Article  Google Scholar 

  • Wu M, Singh AK (2012) Single-cell protein analysis. Curr Opin Biotechnol 23:83–88

    Article  Google Scholar 

  • Yang L, George J, Wang J (2019) Deep profiling of cellular heterogeneity by emerging single-cell proteomic technologies. Proteomics 20:e1900226

    Google Scholar 

  • Yuan Y, Brouchon J, Calvo-Calle JM, Xia J, Sun L, Zhang X, Clayton KL, Ye F, Weitz DA, Heyman JA (2020) Droplet encapsulation improves accuracy of immune cell cytokine capture assays. Lab Chip 20:1513–1520

    Article  Google Scholar 

  • Zhu C, Luo X, Espulgar WV, Koyama S, Kumanogoh A, Saito M, Takamatsu H, Tamiya E (2020) Real-time monitoring and detection of single-cell level cytokine secretion using LSPR technology. Micromachines (Basel) 11:107. https://doi.org/10.3390/mi11010107

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Eyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bucheli, O.T.M., Sigvaldadóttir, I., Eyer, K. (2020). Biochemical Analysis of Secreted Molecules by Individual Cells. In: Santra, T.S., Tseng, FG. (eds) Handbook of Single Cell Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-10-4857-9_48-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4857-9_48-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4857-9

  • Online ISBN: 978-981-10-4857-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics