Skip to main content

Molecular Force Spectroscopy on Cells: Physiological Functions of Cell Adhesion

  • Living reference work entry
  • First Online:
Handbook of Single Cell Technologies
  • 72 Accesses

Abstract

Molecular force spectroscopy (MFS) is a powerful single-cell force spectroscopy tool, usually associated with the height maps of sample surfaces with supernanometer resolution. It enables a single living cell is attached to the atomic force microscope (AFM) to quantify the forces that drive cell-to-cell and cell-to-substrate interactions. Interestingly, AFM-based measurements could be useful to image samples with little or no treatment and under physiologically live conditions, making it well-suited for investigating the ultrastructure of biological tissues. As cell-matrix adherence is a dynamic process, it undergoes continuous remodeling characterized by the perpetual breakage and reformation of bonds with extracellular binding partners. Using AFM-based on single-cell force spectroscopy (AFM-SCFS) is the most extensively studied technique to find in detail the physiological functions of cell adhesion. For this reason, molecular force measurements on the level of single cells gain interest not only for nano/bio-physics but also for biomedical engineering. This chapter discusses an overview of commonly used AFM-SCFS techniques and their applications for single-cell imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Alon R, Dustin ML (2007) Force as a facilitator of integrin conformational changes during leukocyte arrest on blood vessels and antigen-presenting cells. Immunity 26:17–27

    Google Scholar 

  • Andersson M, Madgavkar A, Stjerndahl M et al (2007) Using optical tweezers for measuring the interaction forces between human bone cells and implant surfaces: system design and force calibration. Rev Sci Instrum 78:074302

    Google Scholar 

  • Ashkin A, Dziedzic JM, Bjorkholm J et al (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288–290

    Google Scholar 

  • Beaussart A, El-Kirat-Chatel S, Herman P et al (2013) Single-cell force spectroscopy of probiotic bacteria. Biophys J 104:1886–1892

    Google Scholar 

  • Benoit M, Gabriel D, Gerisch G et al (2000) Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nat Cell Biol 2:313–317

    Google Scholar 

  • Bron PA, Van Baarlen P, Kleerebezem M (2012) Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat Rev Microbiol 10:66–78

    Google Scholar 

  • Busscher HJ, Norde W, Van Der Mei HC (2008) Specific molecular recognition and nonspecific contributions to bacterial interaction forces. Appl Environ Microbiol 74:2559–2564

    Google Scholar 

  • Chen A, Moy VT (2000) Cross-linking of cell surface receptors enhances cooperativity of molecular adhesion. Biophys J 78:2814–2820

    Google Scholar 

  • Dague E, Alsteens D, Latgé J-P et al (2007) Chemical force microscopy of single live cells. Nano Lett 7:3026–3030

    Google Scholar 

  • Dufrêne YF (2010) Atomic force microscopy of fungal cell walls: an update. Yeast 27:465–471

    Google Scholar 

  • Dupres V, Menozzi FD, Locht C et al (2005) Nanoscale mapping and functional analysis of individual adhesins on living bacteria. Nat Methods 2:515–520

    Google Scholar 

  • Dutta SD, Patel DK, Lim K-T (2019a) Functional cellulose-based hydrogels as extracellular matrices for tissue engineering. J Biol Eng 13:55

    Google Scholar 

  • Dutta SD, Patel DK, Seo Y-R et al (2019b) In vitro biocompatibility of electrospun poly (ε-Caprolactone)/cellulose nanocrystals-nanofibers for tissue engineering. J Nanomater 2019:1–11

    Google Scholar 

  • Evans EA, Waugh R, Melnik L (1976) Elastic area compressibility modulus of red cell membrane. Biophys J 16:585

    Google Scholar 

  • Florin E-L, Moy VT, Gaub HE (1994) Adhesion forces between individual ligand-receptor pairs. Science 264:415–417

    Google Scholar 

  • Forrester JV, Lackie J (1981) Effect of hyaluronic acid on neutrophil adhesion. J Cell Sci 50:329–344

    Google Scholar 

  • Franz CM, Müller DJ (2005) Analyzing focal adhesion structure by atomic force microscopy. J Cell Sci 118:5315–5323

    Google Scholar 

  • Franz C, Puech P-H (2008) Atomic force microscopy: a versatile tool for studying cell morphology, adhesion and mechanics. Cell Mol Bioeng 1:289–300

    Google Scholar 

  • Friedrichs J, Torkko JM, Helenius J et al (2007) Contributions of galectin-3 and-9 to epithelial cell adhesion analyzed by single cell force spectroscopy. J Biol Chem 282:29375–29383

    Google Scholar 

  • Garcia AJ, Gallant ND (2003) Stick and grip. Cell Biochem Biophys 39:61–73

    Google Scholar 

  • Hanley WD, Wirtz D, Konstantopoulos K (2004) Distinct kinetic and mechanical properties govern selectin-leukocyte interactions. J Cell Sci 117:2503–2511

    Google Scholar 

  • Helenius J, Heisenberg C-P, Gaub HE et al (2008) Single-cell force spectroscopy. J Cell Sci 121:1785–1791

    Google Scholar 

  • Hoffmann T, Dougan L (2012) Single molecule force spectroscopy using polyproteins. Chem Soc Rev 41:4781–4796

    Google Scholar 

  • Humphries MJ (1998) Cell-substrate adhesion assays. Curr Proto Cell Biol:9.1.1–9.1.11

    Google Scholar 

  • Kemler R (1992) Classical cadherins. Seminars Cell Biol 3:149–155. Elsevier

    Google Scholar 

  • Kiio TM, Park S (2020) Nano-scientific application of atomic force microscopy in pathology: from molecules to tissues. Int J Med Sci 17:844

    Google Scholar 

  • Kollmannsberger P, Fabry B (2007) BaHigh-force magnetic tweezers with force feedback for biological applications. Rev Sci Instrum 78:114301

    Google Scholar 

  • Krieg M, Arboleda-Estudillo Y, Puech P-H et al (2008) Tensile forces govern germ-layer organization in zebrafish. Nat Cell Biol 10:429–436

    Google Scholar 

  • Lebeer S, Vanderleyden J, De Keersmaecker SC (2010) Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat Rev Microbiol 8:171–184

    Google Scholar 

  • Lehenkari P, Horton M (1999) Single integrin molecule adhesion forces in intact cells measured by atomic force microscopy. Biochem Biophys Res Commun 259:645–650

    Google Scholar 

  • Lipfert J, van Oene MM, Lee M et al (2015) Torque spectroscopy for the study of rotary motion in biological systems. Chem Rev 115:1449–1474

    Google Scholar 

  • Litvinov RI, Shuman H, Bennett JS et al (2002) Binding strength and activation state of single fibrinogen-integrin pairs on living cells. Proc Natl Acad Sci U S A 99:7426–7431

    Google Scholar 

  • Liu B, Chen W, Zhu C (2015) Molecular force spectroscopy on cells. Ann Rev Phys Chem 66:427–451

    Google Scholar 

  • Löf A, Walker PU, Sedlak SM et al (2019) Multiplexed protein force spectroscopy reveals equilibrium protein folding dynamics and the low-force response of von Willebrand factor. Proc Natl Acad Sci U S A 116:18798–18807

    Google Scholar 

  • Mandal SS (2020) Force spectroscopy on single molecules of life. ACS Omega 5(20):11271–11278

    Google Scholar 

  • Morgan MR, Humphries MJ, Bass MD (2007) Synergistic control of cell adhesion by integrins and syndecans. Nat Rev Mol Cell Biol 8:957–969

    Google Scholar 

  • Müller DJ, Dufrêne YF (2011) Atomic force microscopy: a nanoscopic window on the cell surface. Trends Cell Biol 21:461–469

    Google Scholar 

  • Panorchan P, Thompson MS, Davis KJ et al (2006) Single-molecule analysis of cadherin-mediated cell-cell adhesion. J Cell Sci 119:66–74

    Google Scholar 

  • Rief M, Grubmüller H (2002) Force spectroscopy of single biomolecules. ChemPhysChem 3:255–261

    Google Scholar 

  • Stewart MP, Helenius J, Toyoda Y et al (2011) Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature 469:226–230

    Google Scholar 

  • Strilić B, Eglinger J, Krieg M et al (2010) Electrostatic cell-surface repulsion initiates lumen formation in developing blood vessels. Curr Biol 20:2003–2009

    Google Scholar 

  • Sun Z, Guo SS, Fässler R (2016) Integrin-mediated mechanotransduction. J Cell Biol 215:445–456

    Google Scholar 

  • Sung K, Sung LA, Crimmins M et al (1986) Determination of junction avidity of cytolytic T cell and target cell. Science 234:1405–1408

    Google Scholar 

  • Taubenberger A, Cisneros DA, Friedrichs J et al (2007) Revealing early steps of α2β1 integrin-mediated adhesion to collagen type I by using single-cell force spectroscopy. Mol Biol Cell 18:1634–1644

    Google Scholar 

  • Taubenberger AV, Hutmacher DW, Muller DJ (2014) Single-cell force spectroscopy, an emerging tool to quantify cell adhesion to biomaterials. Tissue Eng Part B Rev 20:40–55

    Google Scholar 

  • Trache A, Meininger GA (2005) Atomic force-multi-optical imaging integrated microscope for monitoring molecular dynamics in live cells. J Biomed Opt 10:064023

    Google Scholar 

  • Wojcikiewicz EP, Abdulreda MH, Zhang X et al (2006) Force spectroscopy of LFA-1 and its ligands, ICAM-1 and ICAM-2. Biomacromolecules 7:3188–3195

    Google Scholar 

  • Zhang X, Wojcikiewicz E, Moy VT (2002) Force spectroscopy of the leukocyte function-associated antigen-1/intercellular adhesion molecule-1 interaction. Biophys J 83:2270–2279

    Google Scholar 

  • Zhang X, Craig SE, Kirby H et al (2004) Molecular basis for the dynamic strength of the integrin α4β1/VCAM-1 interaction. Biophys J 87:3470–3478

    Google Scholar 

  • Zhang X, Wojcikiewicz EP, Moy VT (2006) Dynamic adhesion of T lymphocytes to endothelial cells revealed by atomic force microscopy. Exp Biol Med 231:1306–1312

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Basic Science Research Program through the “National Research Foundation of Korea” funded by the “Ministry of Education” (NRF-2018R1A6A1A03025582 & NRF-2019R1D1A3A03103828).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Taek Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dutta, S.D., Patel, D.K., Ganguly, K., Lim, KT. (2020). Molecular Force Spectroscopy on Cells: Physiological Functions of Cell Adhesion. In: Santra, T.S., Tseng, FG. (eds) Handbook of Single Cell Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-10-4857-9_30-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4857-9_30-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4857-9

  • Online ISBN: 978-981-10-4857-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics