Skip to main content

Single-Cell Cultivation Utilizing Microfluidic Systems

  • Living reference work entry
  • First Online:
Handbook of Single Cell Technologies

Abstract

Single-cell analysis is essential to deepen our understanding of cellular and subcellular cells at a single-cell level. Single-cell mechanism can be immediately observed during single-cell cultivation. Moreover, single-cell cultivation also provides sufficient cell numbers and product amounts for further single-cell manipulation and analysis. Microfluidic device is a raising system that offers efficient and sensitive single-cell processing and real-time on-chip and off-chip analysis. Single-cell cultivation microfluidics has been developed for understanding numerous biological applications. Here, we introduce the importance of single-cell cultivation from the aspect of cellular morphology to omics study. Then, we discuss numerous biological applications utilizing single-cell cultivation microfluidics such as cell coculture, molecule-induced cellular behaviors, and cell regeneration. Finally, present limitations and future prospects of single-cell cultivation microfluidics are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aardema MJ, MacGregor JT (2002) Toxicology and genetic toxicology in the new era of ‘toxicogenomics’: impact of ‘-omics’ technologies. Mutat Res – Fundam Mol Mech Mutagen 499:13–25

    Article  Google Scholar 

  • Ahuja P, Sdek P, MacLellan WR (2007) Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol Rev 87:521–544

    Article  Google Scholar 

  • Bhattacharjee N, Li N, Keenan TM, Folch A (2010) A neuron-benign microfluidic gradient generator for studying the response of mammalian neurons towards axon guidance factors. Integr Biol 2:669–679

    Article  Google Scholar 

  • Boneschansker L, Yan J, Wong E, Briscoe DM, Irimia D (2014) Microfluidic platform for the quantitative analysis of leukocyte migration signatures. Nat Commun 5:1–12

    Article  Google Scholar 

  • Dinh ND et al (2013) Microfluidic construction of minimalistic neuronal co-cultures. Lab Chip 13:1402–1412

    Article  Google Scholar 

  • Dong L, Chen DW, Liu SJ, Du W (2016) Automated chemotactic sorting and single-cell cultivation of microbes using droplet microfluidics. Sci Rep 6:1–8

    Article  Google Scholar 

  • Dura B et al (2015) Profiling lymphocyte interactions at the single-cell level by microfluidic cell pairing. Nat Commun 6:5940

    Article  Google Scholar 

  • Dura B et al (2016) Longitudinal multiparameter assay of lymphocyte interactions from onset by microfluidic cell pairing and culture. Proc Natl Acad Sci U S A 113:E3599–E3608

    Article  Google Scholar 

  • Dusny C, Lohse M, Reemtsma T, Schmid A, Lechtenfeld OJ (2019) Quantifying a biocatalytic product from a few living microbial cells using microfluidic cultivation coupled to FT-ICR-MS. Anal Chem 91:7012–7018

    Article  Google Scholar 

  • Fritzsch B et al (2019) Neuronal migration generates new populations of neurons that develop unique connections, physiological properties and pathologies. Front Cell Dev Biol 7:1–8

    Article  Google Scholar 

  • Gokce SK et al (2014) A fully automated microfluidic femtosecond laser axotomy platform for nerve regeneration studies in C. elegans. PLoS One 9:1–28

    Article  Google Scholar 

  • Goodus MT, Guzman AM, Calderon F, Jiang Y, Levison SW (2015) Neural stem cells in the immature, but not the mature, subventricular zone respond robustly to traumatic brain injury. Dev Neurosci 37:29–42

    Article  Google Scholar 

  • Gu B et al (2010) Global expression of cell surface proteins in embryonic stem cells. PLoS One 5:1–12

    Google Scholar 

  • Guo SX et al (2008) Femtosecond laser nanoaxotomy lab-on-a-chip for in vivo nerve regeneration studies. Nat Methods 5:531–533

    Article  Google Scholar 

  • Ibrahim S et al (2016) Traumatic brain injury causes aberrant migration of adult-born neurons in the hippocampus. Sci Rep 6:1–12

    Article  MathSciNet  Google Scholar 

  • Inada M, Izawa G, Kobayashi W, Ozawa M (2016) 293 cells express both epithelial as well as mesenchymal cell adhesion molecules. Int J Mol Med 37:1521–1527

    Article  Google Scholar 

  • Jin K et al (2001) Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci U S A 98:4710–4715

    Article  Google Scholar 

  • Jin K et al (2003) Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol Cell Neurosci 24:171–189

    Article  Google Scholar 

  • Karakas HE et al (2017) A microfluidic chip for screening individual cancer cells via eavesdropping on autophagy-inducing crosstalk in the stroma niche. Sci Rep 7:1–11

    Article  Google Scholar 

  • Li R et al (2017a) Microvalve controlled multi-functional microfluidic chip for divisional cell co-culture. Anal Biochem 539:48–53

    Article  Google Scholar 

  • Li F, Truong VX, Thissen H, Frith JE, Forsythe JS (2017b) Microfluidic encapsulation of human mesenchymal stem cells for articular cartilage tissue regeneration. ACS Appl Mater Interfaces 9:8589–8601

    Article  Google Scholar 

  • Lim WF, Inoue-Yokoo T, Tan KS, Lai MI, Sugiyama D (2013) Hematopoietic cell differentiation from embryonic and induced pluripotent stem cells. Stem Cell Res Ther 4:1

    Article  Google Scholar 

  • Lin CH et al (2015) A microfluidic dual-well device for high-throughput single-cell capture and culture. Lab Chip 15:2928–2938

    Article  Google Scholar 

  • Luedde T, Kaplowitz N, Schwabe RF (2014) Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology 147:765–783.e4

    Article  Google Scholar 

  • Mikels AJ, Nusse R (2006) Purified Wnt5a protein activates or inhibits β-catenin-TCF signaling depending on receptor context. PLoS Biol 4:570–582

    Article  Google Scholar 

  • Mills R et al (2018) Neurturin is a PGC-1 a 1-controlled myokine that promotes motor neuron recruitment and neuromuscular junction formation. Mol Metab 7:12–22

    Article  Google Scholar 

  • Naito H, Iba T, Takakura N (2020) Mechanisms of new blood-vessel formation and proliferative heterogeneity of endothelial cells. Int Immunol 32:295–305

    Article  Google Scholar 

  • Ohab JJ, Fleming S, Blesch A, Carmichael ST (2006) A neurovascular niche for neurogenesis after stroke. J Neurosci 26:13007–13016

    Article  Google Scholar 

  • Ota N et al (2019) Isolating single Euglena gracilis cells by glass microfluidics for raman analysis of paramylon biogenesis. Anal Chem 91:9631–9639

    Article  Google Scholar 

  • Pécot T, Zengzhen L, Boulanger J, Salamero J, Kervrann C (2018) A quantitative approach for analyzing the spatio-temporal distribution of 3D intracellular events in fluorescence microscopy. elife 7:1–34

    Article  Google Scholar 

  • Poli D, Wheeler BC, Demarse TB, Brewer GJ (2018) Pattern separation and completion of distinct axonal inputs transmitted via micro-tunnels between co-cultured hippocampal dentate, CA3, CA1 and entorhinal cortex networks. J Neural Eng 15:1–26

    Article  Google Scholar 

  • Robertson G, Bushell TJ, Zagnoni M (2014) Chemically induced synaptic activity between mixed primary hippocampal co-cultures in a microfluidic system. Integr Biol (United Kingdom) 6:636–644

    Article  Google Scholar 

  • Rodriguez LG, Wu X, Guan J (2005) Wound-healing assay. Methods Mol Biol 294:23–29

    Google Scholar 

  • Saha B, Peron S, Murray K, Jaber M, Gaillard A (2013) Cortical lesion stimulates adult subventricular zone neural progenitor cell proliferation and migration to the site of injury. Stem Cell Res 11:965–977

    Article  Google Scholar 

  • Sesen M, Whyte G (2020) Image-based single cell sorting automation in droplet microfluidics. Sci Rep 10:1–14

    Article  Google Scholar 

  • Shapiro LA (2017) Altered hippocampal neurogenesis during the first 7 days after a fluid percussion traumatic brain injury. Cell Transplant 26:1314–1318

    Article  Google Scholar 

  • Valentijn AJ, Metcalfe AD, Kott J, Streuli CH, Gilmore AP (2003) Spatial and temporal changes in Bax subcellular localization during anoikis. J Cell Biol 162:599–612

    Article  Google Scholar 

  • Wang ZZ, Wood MD, Mackinnon SE, Sakiyama-Elbert SE (2018) A microfluidic platform to study the effects of GDNF on neuronal axon entrapment. J Neurosci Methods 308:183–191

    Article  Google Scholar 

  • Watanabe A, Yamada Y, Yamanaka S (2013) Epigenetic regulation in pluripotent stem cells: A key to breaking the epigenetic barrier. Philos Trans R Soc Lond B Biol Sci 368:20120292

    Article  Google Scholar 

  • Wu J et al (2020) Stem cell-laden injectable hydrogel microspheres for cancellous bone regeneration. Chem Eng J 393:124715

    Article  Google Scholar 

  • Xiao RR et al (2013) Simultaneous generation of gradients with gradually changed slope in a microfluidic device for quantifying axon response. Anal Chem 85:7842–7850

    Article  Google Scholar 

  • Xu H, Heilshorn SC (2013) Microfluidic investigation of BDNF-enhanced neural stem cell chemotaxis in CXCL12 gradients. Small 9:585–595

    Article  Google Scholar 

  • Yang C, Xia BR, Jin WL, Lou G (2019) Circulating tumor cells in precision oncology: clinical applications in liquid biopsy and 3D organoid model. Cancer Cell Int 19:1–13

    Article  Google Scholar 

  • Zhang Y et al (2012) Single cell analysis of yeast replicative aging using a new generation of microfluidic device. PLoS One 7:e48275

    Article  Google Scholar 

  • Zhang Q et al (2017) Development of a facile droplet-based single-cell isolation platform for cultivation and genomic analysis in microorganisms. Sci Rep 7:1–11

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Li or Yaxiaer Yalikun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Anggraini, D. et al. (2020). Single-Cell Cultivation Utilizing Microfluidic Systems. In: Santra, T.S., Tseng, FG. (eds) Handbook of Single Cell Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-10-4857-9_20-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4857-9_20-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4857-9

  • Online ISBN: 978-981-10-4857-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics