Skip to main content

On-line Test Microstructures of the Mechanical Properties for Micromachined Multilayered Films

  • Living reference work entry
  • First Online:
  • 258 Accesses

Part of the book series: Micro/Nano Technologies ((MNT,volume 2))

Abstract

Recently, multilayered structures have been utilized in MEMS applications, including infrared focal plane arrays, radio-frequency (RF) components, micromachined mirrors, etc. It is well known that MEMS devices are highly dependent on material parameters such as Young’s modulus and residual stress of the multilayered films. These properties determine both the final shape and the functionality of released microstructures and should therefore be accurately evaluated. Young’s modulus and residual stress for single-layer films have been widely studied by the cantilever deflections, wafer curvatures, displacements of variously designed microstructures, buckling lengths, membrane deflections, resonance frequency, pull-in voltages, and double-clamped beam deflections. However, these methods are not easily extended to multilayered films. Thus it is significantly expected to directly measure both Young’s modulus and residual stress for multilayer films simultaneously. This chapter presents some methods to characterize the material properties of the composite films by electrostatic pull-in testing and the resonance frequency testing approaches adopting the composite double-clamped beam or the cantilever beam. The analytical models are presented and test structures with different lengths and widths are designed. In situ methods for simultaneously extracting material properties (Young’s modulus and residual stress) of each layer for the composite films are reported. The extracting methods have been confirmed by FEM simulations and experiments.

This is a preview of subscription content, log in via an institution.

References

  • Bouwstra S, Geijselaers B (1991) On the resonance frequencies of microbridges. In: Proceedings of the 6th international conference on solid-state sensors and actuators (TRANSDUCERS’91), San Francisco, CA, IEEE, New York 2:1141–1144

    Google Scholar 

  • Chan EK, Garikipati K, Dutton RW (1999) Characterization of contact electromechanics through capacitance-voltage measurements and simulations. J Microelectromech Syst 8(2):208–217

    Article  Google Scholar 

  • Chu LL, Que L, Gianchandani YB (2002) Measurements of material properties using differential capacitive strain sensors. J Microelectromech Syst 11(5):489–498

    Article  Google Scholar 

  • De Coster J, Lofrano M, Jansen R, Rottenberg X, Severi S, Borremans J, Van der Plas G, Donnay S, Tilmans H, De Wolf I 2011 A novel test method for simultaneous measurement of thermal conductivity, CTE, residual stress and Young's modulus of suspended thin films using a laser doppler vibrometer. In: 2011 16th international solid-state sensors, actuators and microsystems conference. IEEE, pp 1701–1704

    Google Scholar 

  • Gabbay LD (1998) Computer aided macromodeling for MEMS (PhD Thesis), Massachusetts Institute of Technology, USA.

    Google Scholar 

  • Gere JM, Goodno BJ (2009) Mechanics of materials. Cengage learning Inc., Independence

    Google Scholar 

  • Gupta RK (1998) Electrostatic pull-in test structure design for in-situ mechanical property measurements of microelectromechanical systems (PhD Thesis), Massachusetts Institute of Technology, Cambridge, USA

    Google Scholar 

  • Henrych J (1981) The dynamics of arches and frames, vol 2. Elsevier Science Ltd, Amsterdam

    MATH  Google Scholar 

  • Hua R, Qing an H, Meng N, Weihua L (2004) A novel anchor for microbeam with perfect fixed-end boundary conditions. Chinese J Semicond-Chinese Edition 25(6):707–710

    Google Scholar 

  • Ilic B, Krylov S, Craighead H (2010) Young’s modulus and density measurements of thin atomic layer deposited films using resonant nanomechanics. J Appl Phys 108(4):044317

    Article  Google Scholar 

  • Kobrinsky MJ, Deutsch ER, Senturia SD (2000) Effect of support compliance and residual stress on the shape of doubly supported surface-micromachined beams. J Microelectromech Syst 9(3):361–369

    Article  Google Scholar 

  • Li L, Gomes J, Brown G, Uttamchandani D, Pan W, Weiland D, Begbie M, Lowrie C, Desmulliez MP (2009) Simultaneous determination of the Young's modulus and Poisson's ratio in micro/nano materials. J Micromech Microeng 19(12):125027

    Article  Google Scholar 

  • Li X, Ono T, Wang Y, Esashi M (2003) Ultrathin single-crystalline-silicon cantilever resonators: fabrication technology and significant specimen size effect on Young’s modulus. Appl Phys Lett 83(15):3081–3083

    Article  Google Scholar 

  • Marshall JC, Herman DL, Vernier PT, DeVoe DL, Gaitan M (2007) Young's modulus measurements in standard IC CMOS processes using MEMS test structures. IEEE Electron Device Lett 28(11):960–963

    Article  Google Scholar 

  • MEMSCAP® (2016) PolyMUMPs reference material. www.memscap.com/products/mumps/polymumps/reference-material. Accessed 07 Nov 2016

  • MEMSnet® (2016) Material: polysilicon, film. www.memsnet.org/material/polysiliconfilm. Accessed 07 Nov 2016

  • Najafi K, Suzuki K 1989 A novel technique and structure for the measurement of intrinsic stress and Young's modulus of thin films. In: Micro electro mechanical systems, 1989, proceedings, an investigation of micro structures, sensors, actuators, machines and robots. IEEE, pp 96–97

    Google Scholar 

  • Namazu T, Fujii T, Takahashi M, Tanaka M, Inoue S (2013) A simple experimental technique for measuring the Poisson's ratio of microstructures. J Microelectromech Syst 22(3):625–636

    Article  Google Scholar 

  • Nayfeh AH, Kreider W, Anderson T (1995) Investigation of natural frequencies and mode shapes of buckled beams. AIAA J 33(6):1121–1126

    Article  MATH  Google Scholar 

  • Nemirovsky Y, Bochobza-Degani O (2001) A methodology and model for the pull-in parameters of electrostatic actuators. J Microelectromech Syst 10(4):601–615

    Article  Google Scholar 

  • Nicu L, Bergaud C (1999) Experimental and theoretical investigations on nonlinear resonances of composite buckled microbridges. J Appl Phys 86(10):5835–5840

    Article  Google Scholar 

  • Nie M, Huang Q-A, Li W, Rong H 2005 An in-situ technique for measuring Young's modulus and residual stress of each layer for multi-layer film. In: The 13th international conference on solid-state sensors, actuators and microsystems, 2005. Digest of technical papers. TRANSDUCERS'05. IEEE, pp 836–839

    Google Scholar 

  • O'Mahony C, Hill M, Duane R, Mathewson A (2003) Analysis of electromechanical boundary effects on the pull-in of micromachined fixed? Fixed beams. J Micromech Microeng 13(4):S75

    Article  Google Scholar 

  • Osterberg PM, Senturia SD (1997) M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures. J Microelectromech Syst 6(2):107–118

    Article  Google Scholar 

  • Pamidighantam S, Puers R, Baert K, Tilmans HA (2002) Pull-in voltage analysis of electrostatically actuated beam structures with fixed–fixed and fixed–free end conditions. J Micromech Microeng 12(4):458

    Article  Google Scholar 

  • Petersen KE (1978) Dynamic micromechanics on silicon: techniques and devices. IEEE Trans Electron Devices 25(10):1241–1250

    Article  Google Scholar 

  • Petersen KE, Guarnieri C (1979) Young’s modulus measurements of thin films using micromechanics. J Appl Phys 50(11):6761–6766

    Article  Google Scholar 

  • Rong H, Huang Q-A, Nie M, Li W (2004) An analytical model for pull-in voltage of clamped–clamped multilayer beams. Sensors Actuators A Phys 116(1):15–21

    Article  Google Scholar 

  • Schweitz J-Å (1992) Mechanical characterization of thin films by micromechanical techniques. MRS Bull 17(07):34–45

    Article  Google Scholar 

  • Shen F, Lu P, O’Shea S, Lee K, Ng T (2001) Thermal effects on coated resonant microcantilevers. Sensors Actuators A Phys 95(1):17–23

    Article  Google Scholar 

  • Song J, Huang Q-A, Li M, Tang J-Y (2009) Effect of die-bonding process on MEMS device performance: system-level modeling and experimental verification. J Microelectromech Syst 18(2):274–286

    Article  Google Scholar 

  • Sun C, Zhou Z-F, Li W-H, Huang Q-A (2014) A simple method for extracting material parameters of multilayered MEMS structures using resonance frequency measurements. J Micromech Microeng 24(7):075014

    Article  Google Scholar 

  • Sun J-y, Hu J-l, Zheng Z-l, He X-t, H-h G (2011) A practical method for simultaneous determination of Poisson’s ratio and Young’s modulus of elasticity of thin films. J Mech Sci Technol 25(12):3165–3171

    Article  Google Scholar 

  • Thomas RN, Guldberg J, Nathanson H, Malmberg P (1975) The mirror-matrix tube: a novel light valve for projection displays. IEEE Trans Electron Devices 22(9):765–775

    Article  Google Scholar 

  • Tilmans HA, Elwenspoek M, Fluitman JH (1992) Micro resonant force gauges. Sensors Actuators A Phys 30(1–2):35–53

    Article  Google Scholar 

  • Tilmans HA, Legtenberg R (1994) Electrostatically driven vacuum-encapsulated polysilicon resonators: part II. Theory and performance. Sensors Actuators A Phys 45(1):67–84

    Article  Google Scholar 

  • Timoshenko SP, Woinowsky-Krieger S (1959) Theory of plates and shells. McGraw-hill, New York

    MATH  Google Scholar 

  • Van Drieënhuizen B, Goosen J, French P, Wolffenbuttel R (1993) Comparison of techniques for measuring both compressive and tensile stress in thin films. Sensors Actuators A Phys 37:756–765

    Article  Google Scholar 

  • Wang S, Crary S, Najafi K 1992 Electronic determination of the modulus of elasticity and intrinsic stress of thin films using capacitive bridges. In: MRS proceedings. Cambridge University Press, p 203

    Google Scholar 

  • Weaver W Jr, Timoshenko SP, Young DH (1990) Vibration problems in engineering. John Wiley & Sons, New York

    Google Scholar 

  • WebElements™ (2016) .Gold: physical properties www.webelements.com/gold/physics.html. Accessed 07 Nov 2016

  • Zou Q, Li Z, Liu L (1995) New methods for measuring mechanical properties of thin films in micromachining: beam pull-in voltage (V PI) method and long beam deflection (LBD) method. Sensors Actuators A Phys 48(2):137–143

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zai-Fa Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry

Zhou, ZF., Huang, QA., Guo, XG., Gu, YF. (2017). On-line Test Microstructures of the Mechanical Properties for Micromachined Multilayered Films. In: Huang, QA. (eds) Micro Electro Mechanical Systems. Micro/Nano Technologies, vol 2. Springer, Singapore. https://doi.org/10.1007/978-981-10-2798-7_9-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2798-7_9-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2798-7

  • Online ISBN: 978-981-10-2798-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics