Silicon Based Optical Sensor: Uncooled Infrared Focal Plane Array Based on Bi-Materials Cantilever Microstructures

Living reference work entry
Part of the Micro/Nano Technologies book series (MNT, volume 2)


This chapter introduces the research work of MEMS-based optical-readable thermal imaging technology. An uncooled infrared focal plane array based on bi-materials cantilever microstructures is presented.


MEMS Optical-readable IR image system FPA 



  1. Barnes JR, Stepheson RJ, Woodburn CN, O’Shea SJ, Welland ME (1994) A femtojoule calorimeter using micromechanical sensors. Rev Sci Instrum 65(12):3793–3798CrossRefGoogle Scholar
  2. Choi J, Yamaguchi J, Morales S, Horowitz R, Zhao Y, Majumdar A (2003) Design and control of a thermal stabilizing system for a MEMS optomechanical uncooled infrared imaging camera. Sens Actuators A 104:132–142CrossRefGoogle Scholar
  3. Datskos PG (2000) Micromechanical uncooled photon detectors. Proc SPIE 3948:80–93CrossRefGoogle Scholar
  4. Datskos PG, Rajic S, Datskou I (1998) Photoinduced and thermal stress in silicon microcantilevers. Appl Phys Lett 73(16):2319–2321CrossRefGoogle Scholar
  5. Dong F et al (2005) Uncooled infrared focal plane array imaging system based on bi-materials cantilever microstructures-design and fabrication. J Infrared and Milliliter Waves 24:409–413Google Scholar
  6. Dong F, Zhang Q, Chen D, Pan L,Guo Z, Wang W, Duan Z, Wu X (2006) An uncooled optically readable infrared imaging detector. 133:236–243Google Scholar
  7. Duan Z (2003) Incoherent optics application on reconstruction of step object shape and bi-materials cantilever infrared imaging system. Master thesis, University of Science and Technology of ChinaGoogle Scholar
  8. Duan Z-H, Zhang Q-C, Wu X-P et al (2003) Uncooled optically readable bimaterial micro-cantilever infrared imaging device. Chin Phys Lett 20:2130–2132CrossRefGoogle Scholar
  9. Duan Z et al. Invisible light opical imaging method and system. Patent ZL03132258.1Google Scholar
  10. Ishizuya T et al (2000) US Patent 6,080,988Google Scholar
  11. Ishizuya T, Suzuki J, Akagawa K et al (2001) Optically readable bi-material infrared detector. J Inst Image Inf Telev Eng 55(2):304–309Google Scholar
  12. Ishizuya T, Suzuki J, Akagawa K et al (2002) 160 × 120 pixels optically readable bi-material infrared detector. In: Proceedings of IEEE MEMS, pp 578–581Google Scholar
  13. Ishizuya T et al. US Patent 6,339,219 B1Google Scholar
  14. Jiao B, Li C et al (2007) A novel opto-mechanical uncooled infrared detector. Infrared Phys Technol 51(1):66–72CrossRefGoogle Scholar
  15. Jiao B, Chen D et al (2008) Noise modeling analysis on thermal optial uncooled infrared imaging system. Opto Electron Eng 35(7):130–135Google Scholar
  16. Jinhu et al (2006) Noise characterization on reliability of light emitting diode. J Phys 3:2261–2264Google Scholar
  17. Kruse PW (2001) Uncooled thermal imaging. Arrays systems and applications. SPIE Press, BellinghamCrossRefGoogle Scholar
  18. Lai J, Perazzo T, Shi Z et al (1997) Optimization and performance of high-resolution micro-optomechanical thermal sensors. Sensors Actuators A 58:113–119CrossRefGoogle Scholar
  19. Li C, Jiao B, Shi S, Ye T et al (2006a) A novel uncooled Substrate-free optical-readable infrared detector: design, fabrication and performance. Meas Sci Technol 17:1981–1986Google Scholar
  20. Li C, Jiao B, Shi S, Ye T et al (2006b) Uncooled infrared focal plane array based on MEMS technology. J Semiconductors 27:150–155Google Scholar
  21. Liu Z (1991) Vacuum technology and equipment. Southeast University press, NanjingGoogle Scholar
  22. Liu H (1992) Mechanics of materials theory, 3rd edn. Higher Education Press, BeijingGoogle Scholar
  23. Manalis SR, Minne SC, Quate CF et al (1997) Two-dimensional micromechanical bimorph arrays for detection of thermal radiation. Appl Phys Lett 70(24):3311–3313CrossRefGoogle Scholar
  24. Mao M, Perazzo T, Kwon O et al (1999a) Infrared vision using an uncooled thermo-opto-mechanical camera: design, microfabrication, and performance. In: Proceedings of IEEE MEMS conference, Orlando, pp 100–105Google Scholar
  25. Mao M, Perazzo T, Kwon O et al (1999b) Direct-view uncooled micro- optomechanical infrared camera. In: Proceedings of IEEE MEMS, pp 100–105Google Scholar
  26. Miao Z et al (2006) Roon temperature infrared imaging system based on bi-materials cantilever microstructures. Acta Physica Sinica 7:132–138Google Scholar
  27. Miao Z et al (2007) An optical readout method for microcantilever array sensing and its sensitivity analysis. Opt Lett 32:594CrossRefGoogle Scholar
  28. Min Y-H, Kim Y-K (2000) In situ measurement of residual stress in micromachined thin films using a specimen with composite-layered cantilevers. J Micromech Microeng 10:314–320CrossRefGoogle Scholar
  29. Mo D (1991) Solid optics. Higher Education Press, BeijingGoogle Scholar
  30. Norton P., Mao M., Perazzo T. et al (2000) Micro-optomechanical infrared receiver with optical readout-MIRROR, Proc. of SPIE, pp 72–78Google Scholar
  31. Oden PI, Datskos PG, Thundat T et al (1996) Uncooled thermal imaging using a piezoresistive microcantilever. Appl Phys Lett 69(21):3277–3279CrossRefGoogle Scholar
  32. Perazzo T, Mao M, Kwon O et al (1999) Infrared vision uncooled microoptomechanical camera. Appl Phys Lett 74(23):3567–3569CrossRefGoogle Scholar
  33. Sarid D (1991) Scanning force microscopy. Oxford University, New YorkGoogle Scholar
  34. Saulson R (1990) Thermal noise in mechanical experiments. Phys Rev D 42(8):2437CrossRefGoogle Scholar
  35. Shi S (2007) Technology research for design and simulation of uncooled infrared focal plane array device and system. Doctoral thesis, IMECASGoogle Scholar
  36. Suzuki et al. US Patent 6,469,301 B1Google Scholar
  37. Ueno M, Kosasayama Y, Sugino T et al (2005) 640×480 pixel uncooled infrared FPA withSOI diode detectros. Proc SPIE 5783:566–577CrossRefGoogle Scholar
  38. Varesi J, Lai J, Perazzo T et al (1997) Photothermal measurements at picowatt resolution using uncooled micro-optomechanical sensors. Appl Phys Lett 71(3):306–308CrossRefGoogle Scholar
  39. Wachter EA, Thundat T, Oden PI, Warmack RJ (1996) Remote optical detection using microcantilevers. Rev Sci Instrum 67(10):3434–3439CrossRefGoogle Scholar
  40. Weibing W, Ye T, Chen D et al (2003) Uncooled infrared focal plane array Imaging system based on bi-materials cantilever microstructures. Micro-Nano Electron Technol 7:404–409Google Scholar
  41. Weibing W, Chen D, Ye T et al (2004) Uncooled infrared focal plane array Imaging system based on opto mechanical effect. Laser Infrared 34:83–86Google Scholar
  42. Yang S (1987) Heat transfer, 2nd edn. Higher Education Press, BeijingGoogle Scholar
  43. Yilin S (1987) Mechanics of materials, 2nd edn. Higher Education Press, BeijingMATHGoogle Scholar
  44. Zhang L, Yang G (2001) Design, simulation and testing on a light modulating thermal image device. J Micromech Microeng 11:85–93CrossRefGoogle Scholar
  45. Zhao Y, Mao M, Majumdar A (1999) Application of Fourier optics for detecting deflection of infrared-sensing microcantilever arrays. Microsc Thermophys Eng 3:249–251Google Scholar
  46. Zhao Y, Mao M, Horowitz R et al (2002) Optomechanical uncooled infrared imaging system: design, microfabrication, and performance. J MEMS 11:136–146CrossRefGoogle Scholar
  47. Zhuang Y (1993) Noise and low noise technology of semiconductor device. National Defense Industry Press, BeijingGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Microelectronics of Chinese Academy of Sciences (IMECAS)BeijingChina

Personalised recommendations