Skip to main content

Piezoelectric Micro/Nano Mechanical Devices for Frequency Control and Chemical Sensing

  • Living reference work entry
  • First Online:
Micro Electro Mechanical Systems

Part of the book series: Micro/Nano Technologies ((MNT,volume 2))

Abstract

This chapter reports on the state of the art of piezoelectric micro-/nano-mechanical devices in frequency control and sensing applications. Recent studies on bulk acoustic wave (BAW) devices are introduced, including investigation of high-coupling materials and filter and oscillator designs. A novel class of frequency devices based on Lamb waves is also reviewed. Micro- and nano-mechanical sensors for various sensing applications and integrated module are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akiyama M, Kamohara T, Kano K, Teshigahara A, Takeuchi Y, Kawahara N (2009) Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering. Adv Mater 21(5):593–596

    Article  Google Scholar 

  • Bhugra H, Lee S, Pan W, Pai M, Lei D (2014) Commercialization of world’s first piezomems resonators for high performance timing applications. In: 2014 I.E. 27th international conference on micro electro mechanical systems (MEMS). IEEE, pp 204–205

    Google Scholar 

  • Cassella C, Chen G, Qian Z, Hummel G, Rinaldi M (2016) RF passive components based on aluminum nitride cross-sectional lamé-mode MEMS Resonators. IEEE Trans Electron Devices 64(1):237–243

    Google Scholar 

  • Chang Y, Lu Y, Tang N, Pang W, Zhang H, Zhang D, Duan X (2015) Fingerprint library of volatile organic compounds by monolayer functionalized film bulk acoustic resonator arrays. In: 19th international conference on miniaturized systems for chemistry and life sciences, MicroTAS 2015, 25 Oct, 2015 – 29 Oct, 2015, Gyeongju. Chemical and Biological Microsystems Society, pp 1737–1739

    Google Scholar 

  • Chang Y, Tang N, Qu H, Liu J, Zhang D, Zhang H, Pang W, Duan X (2016) Detection of volatile organic compounds by self-assembled monolayer coated sensor array with concentration-independent fingerprints. Sci Rep 6:23970

    Google Scholar 

  • Chen Y, Zhang H, Feng Z, Zhang H, Zhang R, Yu Y, Tao J, Zhao H, Guo W, Pang W (2016a) Chemiresistive and gravimetric dual-mode gas sensor toward target recognition and differentiation. ACS Appl Mater Interfaces 8(33):21742–21749

    Article  Google Scholar 

  • Chen Y, Zhang H, Zhang H, Feng Z, Zhao H, Sun C, Zheng S, Pang W, Zhang D (2016b) Acoustically induced current in graphene by aluminum nitride transducers. Appl Phys Lett 108(3):033107

    Article  Google Scholar 

  • Duan Y, Chang Y, Liang J, Jiang Y, Pang W, Duan XX, Zhang ML (2016) Wireless and passive piezoelectric microelectromechanical resonant sensors for realtime physical and biochemical sensing. In: 20th international conference on miniaturized systems for chemistry and life sciences, MicroTAS 2016, 9 Oct 2016–13 Oct 2016. Chemical and Biological Microsystems Society, Dublin, pp 1386–1387

    Google Scholar 

  • Feng Z, Chen B, Qian S, Xu L, Feng L, Yu Y, Zhang R, Chen J, Li Q, Li Q (2016) Chemical sensing by band modulation of a black phosphorus/molybdenum diselenide van der Waals hetero-structure. 2D Mater 3(3):035021

    Article  Google Scholar 

  • Giovannini M, Yazici S, Kuo N-K, Piazza G (2014) Apodization technique for spurious mode suppression in AlN contour-mode resonators. Sensors Actuators A Phys 206:42–50

    Article  Google Scholar 

  • Gong S, Piazza G (2014) Monolithic multi-frequency wideband RF filters using two-port laterally vibrating lithium niobate MEMS resonators. J Microelectromech Syst 23(5):1188–1197

    Article  Google Scholar 

  • Harrington B, Abdolvand R (2011) In-plane acoustic reflectors for reducing effective anchor loss in lateral? Extensional MEMS resonators. J Micromech Microeng 21(8):085021

    Article  Google Scholar 

  • Huang J, Zhang M, Cui W, Duan Y, Zheng S, Duan X, Pang W, Zhang D, Zhang HA (2015) High-throughput micro TAS integrating digital microfluidic driver and on-chip biosensor array for massively parallel detection. In: 19th international conference on miniaturized systems for chemistry and life sciences, MicroTAS 2015, 25 Oct 2015–29 Oct 2015. Chemical and Biological Microsystems Society, Gyeongju, pp 1220–1222

    Google Scholar 

  • Kim B, Olsson RH, Wojciechowski KE (2013) AlN microresonator-based filters with multiple bandwidths at low intermediate frequencies. J Microelectromech Syst 22(4):949–961

    Article  Google Scholar 

  • Konno A, Sumisaka M, Teshigahara A, Kano K, Hashimo K-Y, Hirano H, Esashi M, Kadota M, Tanaka S (2013) ScAlN lamb wave resonator in GHz range released by XeF 2 etching. In: 2013 I.E. international ultrasonics symposium (IUS). IEEE, pp 1378–1381

    Google Scholar 

  • Kreuzer S, Volatier A, Fattinger G, Dumont F (2015) Full band 41 filter with high Wi-Fi rejection-design and manufacturing challenges. In: 2015 I.E. international ultrasonics symposium (IUS). IEEE, pp 1–4

    Google Scholar 

  • Liang J, Zhang H, Xie H, Pang W, Zhang D, Zhang H (2014) Aluminum nitride lamb wave resonators with high figure of merit for narrowband filter applications. In: 2014 I.E. international frequency control symposium (FCS). IEEE, pp 1–4

    Google Scholar 

  • Liang J, Zhang H, Zhang D, Duan X, Zhang H, Pang W (2015a) Design and fabrication of aluminum nitride lamb wave resonators towards high figure of merit for intermediate frequency filter applications. J Micromech Microeng 25(3):035016

    Article  Google Scholar 

  • Liang J, Zhang H, Zhang D, Zhang H, Pang W (2015b) 500-terminated ALN MEMS filters based on lamb wave resonators. In: 2015 transducers-2015 18th international conference on solid-state sensors, actuators and microsystems (TRANSDUCERS). IEEE, pp 1973–1976

    Google Scholar 

  • Lin C-M, Lai Y-J, Hsu J-C, Chen Y-Y, Senesky DG, Pisano AP (2011) High-Q aluminum nitride lamb wave resonators with biconvex edges. Appl Phys Lett 99(14):143501

    Article  Google Scholar 

  • Liu W, Wang J, Yu Y, Chang Y, Tang N, Qu H, Wang Y, Pang W, Zhang H, Zhang D (2014) Tuning the resonant frequency of resonators using molecular surface self-assembly approach. ACS Appl Mater Interfaces 7(1):950–958

    Article  Google Scholar 

  • Liu W, Zhang H, Zhao H, Tang Z, Wang Y, Sun C, Pang W, Duan X (2017) Comparative analysis of static and non-static assays for biochemical sensing using on-chip integrated field effect transistors and solidly mounted resonators. Sensors Actuators B Chem 243:775–783

    Article  Google Scholar 

  • Lu Y, Chang Y, Tang N, Qu H, Liu J, Pang W, Zhang H, Zhang D, Duan X (2015) Detection of volatile organic compounds using microfabricated resonator array functionalized with supramolecular monolayers. ACS Appl Mater Interfaces 7(32):17893–17903

    Article  Google Scholar 

  • Matloub R, Artieda A, Sandu C, Milyutin E, Muralt P (2011) Electromechanical properties of Al0. 9Sc0. 1N thin films evaluated at 2.5 GHz film bulk acoustic resonators. Appl Phys Lett 99(9):092903

    Article  Google Scholar 

  • Moreira M, Bjurström J, Katardjev I, Yantchev V (2011) Aluminum scandium nitride thin-film bulk acoustic resonators for wide band applications. Vacuum 86(1):23–26

    Article  Google Scholar 

  • Pang W, Ruby RC, Parker R, Fisher PW, Unkrich MA, Larson JD (2008) A temperature-stable film bulk acoustic wave oscillator. IEEE Electron Device Lett 29(4):315–318

    Article  Google Scholar 

  • Pang W, Yan L, Zhang H, Yu H, Kim ES, Tang WC (2006) Femtogram mass sensing platform based on lateral extensional mode piezoelectric resonator. Appl Phys Lett 88(24):243503–243503

    Article  Google Scholar 

  • Pang W, Zhao H, Kim ES, Zhang H, Yu H, Hu X (2012) Piezoelectric microelectromechanical resonant sensors for chemical and biological detection. Lab Chip 12(1):29–44

    Article  Google Scholar 

  • Paprotny I, Doering F, Solomon PA, White RM, Gundel LA (2013) Microfabricated air-microfluidic sensor for personal monitoring of airborne particulate matter: design, fabrication, and experimental results. Sensors Actuators A Phys 201:506–516

    Article  Google Scholar 

  • Qi M, Zhang D, Pang W, Zhang H (2012) High performance TD-SCDMA band-pass filter based on film bulk acoustic resonator technology. In: 2012 Asia Pacific microwave conference proceedings. IEEE, pp 547–549

    Google Scholar 

  • Rai S, Su Y, Pang W, Ruby R, Otis B (2010) A digitally compensated 1.5 GHz CMOS/FBAR frequency reference. IEEE Trans Ultrason Ferroelectr Freq Control 57(3):552–561

    Article  Google Scholar 

  • Rinaldi M, Zuo C, Van der Spiegel J, Piazza G (2011) Reconfigurable CMOS oscillator based on multifrequency AlN contour-mode MEMS resonators. IEEE Trans Electron Devices 58(5):1281–1286

    Article  Google Scholar 

  • Schedin F, Geim A, Morozov S, Hill E, Blake P, Katsnelson M, Novoselov K (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6(9):652–655

    Article  Google Scholar 

  • Segovia-Fernandez J, Cremonesi M, Cassella C, Frangi A, Piazza G (2015) Anchor losses in AlN contour mode resonators. J Microelectromech Syst 24(2):265–275

    Article  Google Scholar 

  • Shealy JB, Hodge MD, Patel P, Vetury R, Feldman AY, Gibb SR, Boomgarden MD, Lewis MP, Shealy JB, Shealy JR (2016a) Single crystal AlGaN bulk acoustic wave resonators on silicon substrates with high electromechanical coupling. In: Radio frequency integrated circuits symposium (RFIC). IEEE, pp 103–106

    Google Scholar 

  • Shealy JB, Shealy JB, Patel P, Hodge MD, Vetury R, Shealy JR (2016b) Single crystal aluminum nitride film bulk acoustic resonators. In: 2016 I.E. radio and wireless symposium (RWS). IEEE, pp 16–19

    Google Scholar 

  • Sun Y, Yang Q, Zhang H, Zhang D, Pang W A (2015) Compact dual-passband filter based on bulk acoustic wave technology. In: 2015 I.E. MTT-S international microwave symposium. IEEE, pp 1–4

    Google Scholar 

  • Tabrizian R, Casinovi G, Ayazi F (2013) Temperature-stable silicon oxide (SilOx) micromechanical resonators. IEEE Trans Electron Devices 60(8):2656–2663

    Article  Google Scholar 

  • Tasnadi F, Alling B, Höglund C, Wingqvist G, Birch J, Hultman L, Abrikosov IA (2010) Origin of the anomalous piezoelectric response in wurtzite Sc x al 1− x N alloys. Phys Rev Lett 104(13):137601

    Article  Google Scholar 

  • Umeda K, Kawai H, Honda A, Akiyama M, Kato T, Fukura T (2013) Piezoelectric properties of ScAlN thin films for piezo-MEMS devices. In: IEEE 26th international conference on micro electro mechanical systems (MEMS). IEEE, pp 733–736

    Google Scholar 

  • Wang R, Bhave SA, Zhgoon S, Bhattacharjee K(2016) Multi-frequency LiNbo3 lamb wave resonators with< 3?? impedance. In: 2016 I.E. 29th international conference on micro electro mechanical systems (MEMS). IEEE, pp 679–682

    Google Scholar 

  • Warder P, Link A (2015) Golden age for filter design: innovative and proven approaches for acoustic filter, duplexer, and multiplexer design. IEEE Microw Mag 16(7):60–72

    Article  Google Scholar 

  • Yang Q, Pang W, Zhang D, Zhang H (2016) A modified lattice configuration design for compact wideband bulk acoustic wave filter applications. Micromachines 7(8):133

    Article  Google Scholar 

  • Ye C, Hemi Q, Xuexin D, Luye M, Reed MA VOC (2016) Detection using multimode E-nose composed of bulk acoustic wave resonator and silicon nanowire field effect transistor array. In: Proceedings of 2016 I.E. Sensors, 30 Oct–3 Nov 2016. IEEE, Piscataway, p 3. doi:10.1109/ICSENS.2016.7808606

    Google Scholar 

  • Yokoyama T, Iwazaki Y, Onda Y, Nishihara T, Sasajima Y, Ueda M (2015) Highly piezoelectric co-doped AlN thin films for wideband FBAR applications. IEEE Trans Ultrason Ferroelectr Freq Control 62(6):1007–1015

    Article  Google Scholar 

  • Yuan Z, Qingrui Y, Ye C, Rui Z, Jin T, Hemi Q, Xuexin D (2016) Detection of volatile organic compunds by high-Q piezotransduced single-crystal silicon bulk acoustic resonator arrays. In: Proceedings of 2016 I.E. Sensors, 30 Oct–3 Nov 2016. IEEE, Piscataway, p 3 doi:10.1109/ICSENS.2016.7808661

    Google Scholar 

  • Zhang H, Kim ES (2005) Micromachined acoustic resonant mass sensor. J Microelectromech Syst 14(4):699–706

    Article  Google Scholar 

  • Zhang H, Liang J, Zhang H, Zhang D, Pang W (2015c) Spurious-free lamb wave resonators with protrusion structures. Appl Phys Lett 107(24):243502

    Article  Google Scholar 

  • Zhang H, Liang J, Zhou X, Zhang H, Zhang D, Pang W (2015d) Transverse mode spurious resonance suppression in lamb wave MEMS resonators: theory, modeling, and experiment. IEEE Trans Electron Devices 62(9):3034–3041

    Article  Google Scholar 

  • Zhang H, Marma MS, Bahl SK, Kim ES, McKenna CE (2007) Sequence specific label-free DNA sensing using film-bulk-acoustic-resonators. IEEE Sensors J 7(12):1587–1588

    Article  Google Scholar 

  • Zhang H, Pang W (2011) A novel single-ended to balanced bulk acoustic wave filter for wireless communications. IEEE Microwave Wireless Compon Lett 21(7):347–349

    Article  Google Scholar 

  • Zhang H, Pang W, Kim ES (2011) Miniature high-frequency longitudinal wave mass sensors in liquid. IEEE Trans Ultrason Ferroelectr Freq Control 58(1):255–258

    Article  Google Scholar 

  • Zhang H, Pang W, Marma MS, Lee C-Y, Kamal-Bahl S, Kim ES, McKenna CE (2010) Label-free detection of protein-ligand interactions in real time using micromachined bulk acoustic resonators. Appl Phys Lett 96(12):123702

    Article  Google Scholar 

  • Zhang M, Cui W, Chen X, Wang C, Pang W, Duan X, Zhang D, Zhang H (2015a) Monolithic integrated system with an electrowetting-on-dielectric actuator and a film-bulk-acoustic-resonator sensor. J Micromech Microeng 25(2):025002

    Article  Google Scholar 

  • Zhang M, Cui W, Liang J, Zhang D, Pang W, Zhang H A (2014a) single-chip biosensing platform integrating FBAR sensor with digital microfluidic device. In: 2014 I.E. international ultrasonics symposium. IEEE, pp 1521–1523

    Google Scholar 

  • Zhang M, Cui W, Zhang D, Pang W, Zhang H (2014b) Response signal enhancement of film bulk acoustic resonator mass sensor with bounded hydrophobic Teflon film. In: 2014 I.E. international frequency control symposium (FCS). IEEE, pp 1–4

    Google Scholar 

  • Zhang M, Huang J, Cui W, Pang W, Zhang H, Zhang D, Duan X (2015b) Kinetic studies of microfabricated biosensors using local adsorption strategy. Biosens Bioelectron 74:8–15

    Article  Google Scholar 

  • Zhang Z, Lu Y, Pang W, Zhang D, Zhang H A (2013) High performance C-band FBAR filter. In: 2013 Asia-Pacific microwave conference proceedings (APMC). IEEE, pp 923–926

    Google Scholar 

  • Zhao H, Guo X, Wang Y, Duan X, Qu H, Zhang H, Zhang D, Pang W (2016) Microchip based electrochemical-piezoelectric integrated multi-mode sensing system for continuous glucose monitoring. Sensors Actuators B Chem 223:83–88

    Article  Google Scholar 

  • Zheng S, Zhang H, Feng Z, Yu Y, Zhang R, Sun C, Liu J, Duan X, Pang W, Zhang D (2016) Acoustic charge transport induced by the surface acoustic wave in chemical doped graphene. Appl Phys Lett 109(18):183110

    Article  Google Scholar 

  • Zhu Y, Wang N, Sun C, Merugu S, Singh N, Gu Y (2016) A high coupling coefficient 2.3-GHz AlN resonator for high band LTE filtering application. IEEE Electron Device Lett 37(10):1344–1346

    Article  Google Scholar 

  • Zuo C, Sinha N, Piazza G (2010) Very high frequency channel-select MEMS filters based on self-coupled piezoelectric AlN contour-mode resonators. Sensors Actuators A Phys 160(1):132–140

    Article  Google Scholar 

  • Zuo C, Yun CH, Stephanou PJ, Park S-J, Lo C-ST, Mikulka R, Lan J-HJ, Velez MF, Shenoy RV, Kim J (2012) Cross-sectional dilation mode resonator with very high electromechanical coupling up to 10% using AlN. In: 2012 I.E. international frequency control symposium proceedings. IEEE, pp 1–4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Pang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry

Pang, W., Zhang, M., Liang, J. (2017). Piezoelectric Micro/Nano Mechanical Devices for Frequency Control and Chemical Sensing. In: Huang, QA. (eds) Micro Electro Mechanical Systems. Micro/Nano Technologies, vol 2. Springer, Singapore. https://doi.org/10.1007/978-981-10-2798-7_23-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2798-7_23-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2798-7

  • Online ISBN: 978-981-10-2798-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics