Skip to main content

Microcalorometers for Detection of Trace Energetic Chemicals

  • Living reference work entry
  • First Online:
  • 240 Accesses

Part of the book series: Micro/Nano Technologies ((MNT,volume 2))

Abstract

Detection of trace energetic chemical (TEC) vapors is a challenging task because of the extremely low vapor concentrations of most TECs. Microcalorimeters, which consist of a suspended microbridge with integrated heaters and thermistors, are emerging as a powerful tool for fast detection of TECs. By heating the TEC molecules adsorbed onto the microcalorimeters to deflagration using the heaters and measuring the induced thermal responses and the total heat using the thermistors, microcalorimeters can detect TEC vapors through differential scanning calorimetry mode or differential thermal analysis mode. Due to the large surface areas, the small heat mass, and the rapid heating rates, the microcalorimeters are able to detect TEC vapors with low detection limits and fast detection rates.

This is a preview of subscription content, log in via an institution.

References

  • Agah M, Potkay JA, Lambertus G et al (2005) High-performance temperature-programmed microfabricated gas chromatography columns. IEEE J Microelectromech Syst 14:1039–1050

    Article  Google Scholar 

  • Aguilar AD, Forzani ES, Leright M et al (2010) A hybrid nanosensor for TNT vapor detection. Nano Lett 10:380–384

    Article  Google Scholar 

  • Berger S, Kwon YK, Tomanek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84:4613–4616

    Article  Google Scholar 

  • Bogue R (2011) Terrorism and military actions pose the ultimate challenge to gas sensing. Sensors Rev 31:6–12

    Article  Google Scholar 

  • Boukabache A, Pons R (2002) Doping effects on thermal behavior of silicon resistor. Electron Lett 38:342–343

    Article  Google Scholar 

  • Bruzo MG, Komarov PL, Raad PE (2003) Thermal transport properties of gold-covered thin-film silicon dioxide. IEEE Trans Compon Packag Technol 26:80–88

    Article  Google Scholar 

  • Camara EHM, Breuil P, Briand D et al (2011) A micro gas preconcentrator with improved performance for pollution monitoring and explosives detection. Anal Chim Acta 688:175–182

    Article  Google Scholar 

  • Carreto-Vazquez VH, Wojcik AK, Liu Y-S et al (2010) Miniaturized calorimeter for thermal screening of energetic materials. Microelectron J 41:874–881

    Article  Google Scholar 

  • Cavicchi RE, Poirier GE, Tea NH et al (2004) Micro-differential scanning calorimeter for combustible gas sensing. Sensors Actuators B Chem 97:22–30

    Article  Google Scholar 

  • Chen C-C, Bannister WW, Viswanathan A (1999) Micro-thermal analysis for airport detection of energetic materials. In: Proceedings the 27th annual conference on North American thermal analysis society, pp 67–72

    Google Scholar 

  • Chen PC, Sukcharoenchoke S, Ryu K et al (2010) 2,4,6-trinitrotoluene (TNT) chemical sensing based on aligned single-walled carbon nanotubes and ZnO nanowires. Adv Mater 22:1900–1904

    Article  Google Scholar 

  • Ewing RG, Atkinson DA, Eiceman GA et al (2001) A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta 54:515–529

    Article  Google Scholar 

  • Fainberg A (1992) Explosives detection for aviation security. Science 255:1531–1537

    Article  Google Scholar 

  • Furton KG, Myers LJ (2001) The scientific foundation and efficacy of the use of canines as chemical detectors for explosives. Talanta 54:487–500

    Article  Google Scholar 

  • Gershanik AP, Zeiri Y (2010) Sublimation rate of TNT microcrystals in air. J Phys Chem A 114:12403–12410

    Article  Google Scholar 

  • Goeders KM, Colton JS, Bottomley LA (2008) Microcantilevers: sensing chemical interactions via mechanical motion. Chem Rev 108:522–542

    Article  Google Scholar 

  • Greve A, Olsen JK, Boisen A et al (2009) Micro-calorimetric sensor for vapour phase explosive detection with optimized heat profile. In: Proceedings IEEE sensors conference on Hawaii, pp 723–726

    Google Scholar 

  • Hess CK, Miaoulis IN (1995) Implicit modified enthalpy method with application to thin film melting. Int J Numer Methods Heat Fluid Flow 5:385–398

    Article  MATH  Google Scholar 

  • Hiraoka T, Izadi-Najafabadi A, Yamada T et al (2010) Compact and light supercapacitor electrodes from a surface-only solid by opened carbon nanotubes with 2200 m2/g surface area. Adv Funct Mater 20:422–428

    Article  Google Scholar 

  • Hobbs ML, Kaneshige MJ, Gilbert DW et al (2009) Modeling TNT ignition. J Phys Chem A 113:10474–10487

    Article  Google Scholar 

  • Hrapovic S, Majid E, Liu Y et al (2006) Metallic nanoparticle-carbon nanotube composites for electrochemical determination of explosive nitroaromatic compounds. Anal Chem 78:5504–5512

    Article  Google Scholar 

  • Ju YS, Goodson KE (1999) Phonon scattering in silicon films with thickness of order 100 nm. Appl Phys Lett 74:3005–3007

    Article  Google Scholar 

  • Kleiner MB, Kuhn SA, Weber W (1996) Thermal conductivity measurements of thin silicon dioxide films in integrated circuits. IEEE Trans Electron Devices 43:1602–1609

    Article  Google Scholar 

  • Lamberg P, Lehtiniemi R, Henell A-M (2004) Numerical and experimental investigation of melting and freezing processes in phase change material storage. Int J Thermal Sci 43:277–287

    Article  Google Scholar 

  • Lee DS, Shim CH, Lim JW et al (2002) A microsensor array with porous tin oxide thin films and microhotplate dangled by wires in air. Sensors Actuators B Chem 83:250–255

    Article  Google Scholar 

  • Lienhard JH IV, Lienhard JHV (2005) A heat transfer textbook, 3rd edn. Phlogiston Press, Cambridge, pp 19–26

    MATH  Google Scholar 

  • Liu YS, Ugaza VM, North SW et al (2007) Development of a miniature calorimeter for identification and detection of explosives and other energetic compounds. J Hazardous Mat 142:662–668

    Article  Google Scholar 

  • Lu C-J, Whiting J, Sacks RD, Zellers ET (2003) Portable gas chromatograph with tunable retention and sensor array detection for determination of complex vapor mixtures. Anal Chem 75:1400–1409

    Article  Google Scholar 

  • Moore DS (2004) Instrumentation for trace detection of high explosives. Rev Sci Instrum 75:2499–2512

    Article  Google Scholar 

  • Mullen C, Irwin A, Pond BV et al (2006) Detection of explosives and explosives-related compounds by single photon laser ionization time-of-flight mass spectrometry. Anal Chem 78:3807–3814

    Article  Google Scholar 

  • Naddo T, Yang XM, Moore JS et al (2008) Highly responsive fluorescent sensing of explosives taggant with an organic nanofibril film. Sensors Actuators B Chem 134:287–291

    Article  Google Scholar 

  • Nambayah M, Quickenden TI (2004) A quantitative assessment of chemical techniques for detecting traces of explosives at counter-terrorist portals. Talanta 63:461–467

    Article  Google Scholar 

  • Panzer MA, Zhang G, Mann D et al (2008) Thermal properties of metal-coated vertically aligned single-wall nanotube arrays. ASME J Heat Transfer 130:052401

    Article  Google Scholar 

  • Patel SV, Mlsna TE, Fruhberger B et al (2003) Chemicapacitive microsensors for volatile organic compound detection. Sensors Actuators B Chem 96:541–553

    Article  Google Scholar 

  • Patil N, Lin A, Myers ER et al (2009) Wafer-scale growth and transfer of aligned single-walled carbon nanotubes. IEEE Trans Nanotech 8:498–504

    Article  Google Scholar 

  • Piazzon N, Rosenthal M, Bondar A et al (2010) Characterization of explosives traces by the nanocalorimetry. J Phys Chem Solids 71:114–118

    Article  Google Scholar 

  • Piekiel NW, Cavicchib RE, Zachariaha MR (2011) Rapid-heating of energetic materials using a micro-differential, scanning calorimeter. Thermochim Acta 521:125–129

    Article  Google Scholar 

  • Pinnaduwage LA, Gehl A, Hedden DL et al (2003) A microsensor for trinitrotoluene vapour. Nature 425:474

    Article  Google Scholar 

  • Pinnaduwage LA, Wig A, Hedden DL et al (2004a) Detection of trinitrotoluene via deflagration on a microcantilever. J Appl Phys 95:5871–5875

    Article  Google Scholar 

  • Pinnaduwage LA, Yi D, Tian F et al (2004b) Adsorption of trinitroluene on uncoated silicon microcantilever surfaces. Langmuir 20:2690–2694

    Article  Google Scholar 

  • Pinnaduwage LA, Ji HF, Thundat T (2005) Moore’s law in homeland defense: an integrated sensor platform based on silicon microcantilevers. IEEE Sensors J 5:775–785

    Article  Google Scholar 

  • Pinnaduwage LA, Gehl AC, Allman SL et al (2007) Miniature sensor suitable for electronic nose applications. Rev Sci Instrum 78:055101

    Article  Google Scholar 

  • Roberts ME, LeMieux MC, Bao Z (2009) Sorted and aligned single-walled carbon nanotube networks for transistor-based aqueous chemical sensors. ACS Nano 3:3287–3293

    Article  Google Scholar 

  • Ruan W, Wang Z, Liu L et al (2011) Synthesis of carbon nanotubes on suspending microstructures by rapid local laser heating. IEEE Sensors J 11:3424–3425

    Article  Google Scholar 

  • Ruan W, Wang Z, Li Y, Liu L (2012) In-situ heat capacity measurement of carbon nanotubes using suspending microstructure based micro-calorimetry. IEEE Trans Nanotech 11:367–373

    Article  Google Scholar 

  • Ruan W, Wang Z, Li Y, Liu L (2013) A microcalorimeter integrated with carbon nanotube interface layers for fast detection of trace energetic chemicals. IEEE J Microelectromechanical Syst 22(1):152–162

    Article  Google Scholar 

  • Senesac LR, Thundat TG (2008) Nanosensors for trace explosive detection. Mater Today 11:28–36

    Article  Google Scholar 

  • Senesac LR, Yi D, Greve A et al (2009) Micro-differential thermal analysis detection of adsorbed explosive molecules using microfabricated bridges. Rev Sci Instrum 80:035102

    Article  Google Scholar 

  • Sergio M, Arben M (2012) Nanomaterials based electrochemical sensing applications for safety and security. Electroanalysis 24:459–469

    Article  Google Scholar 

  • Shankaran DR, Gobi KV, Sakai T et al (2005) Surface plasmon resonance immunosensor for highly sensitive detection of 2,4,6-trinitrotoluene. Biosens Bioelectron 20:1750–1756

    Article  Google Scholar 

  • Sheehan PE, Whitman LJ (2005) Detection limits for Nanoscale biosensors. Nano Lett 5(4):803–807

    Article  Google Scholar 

  • Singh S (2007) Sensors-an effective approach for the detection of explosives. J Hazardous Mater 144:15–28

    Article  Google Scholar 

  • Sinha N, Ma J, Yeow JTW (2006) Carbon nanotube-based sensors. J Nanosci Nanotechnol 6:573–590

    Article  Google Scholar 

  • Son Y, Pal SK, Borca-Tasciuc T et al (2008) Thermal resistance of the native interface between vertically aligned multiwalled carbon nanotube arrays and their SiO2/Si substrate. J Appl Phys 103:024911

    Article  Google Scholar 

  • Southworth DR, Bellan LM, Linzon Y et al (2010) Stress-based vapor sensing using resonant microbridges. Appl Phys Lett 96:163503

    Article  Google Scholar 

  • Steinfeld JI, Wormhoudt J (1998) Explosives detection: a challenge for physical chemistry. Annu Rev Phys Chem 49:203–232

    Article  Google Scholar 

  • Sun D, Garimella SV (2005) Numerical and experimental investigation of the melt casting of explosives. Propellants Explos Pyrotech 30:369–380

    Article  Google Scholar 

  • Sun Y, Liu K, Miao J et al (2010) Highly sensitive surface-enhanced raman scattering substrate made from super-aligned carbon nanotubes. Nano Lett 10:1747–1753

    Article  Google Scholar 

  • Timmermans YM, Grigoras K, Nasibulin AG et al (2011) Lithography-free fabrication of carbon nanotube network transistors. Nanotechnol 22:065303

    Article  Google Scholar 

  • Tournus T, Latil S, Heggie MI et al (2005) Pi-stacking interaction between carbon nanotubes and organic molecules. Phy Rev B 72:075431

    Article  Google Scholar 

  • Wang J (2004) Microchip devices for detecting terrorist weapons. Anal Chim Acta 507:3–10

    Article  Google Scholar 

  • Wang J (2007) Electrochemical sensing of explosives. Electroanalysis 19:415–423

    Article  Google Scholar 

  • Wang J, Thongngamdee S (2003) On-line electrochemical monitoring of (TNT) 2,4,6-trinitrotoluene in natural waters. Anal Chim Acta 485:139–144

    Article  Google Scholar 

  • Wang Z, Yue R, Zhang R, Liu L (2005) Design and optimization of laminated piezoresistive microcantilever sensors. Sensors Actuators A 120(2):325–336

    Article  Google Scholar 

  • Wang L, Wang B, Lin Q (2008) Demonstration of MEMS-based differential scanning calorimetry for determining thermodynamic properties of biomolecules. Sensors Actuators B Chem 134:953–958

    Article  Google Scholar 

  • Woods LM, Badescu SC, Reinecke TL (2007) Adsorption of simple benzene derivatives on carbon nanotubes. Phys Rev B 75:155415

    Article  Google Scholar 

  • Xu P, Li X, Yu H et al (2010) Self-assembly and sensing-group graft of pre-modified CNTs on resonant micro-cantilevers for specific detection of volatile organic compound vapors. J Micromech Microeng 20:115003

    Article  Google Scholar 

  • Yamane T, Nagai N, Katayama S, Todoki M (2002) Measurement of thermal conductivity of silicon dioxide thin films using a 3ω method. Appl Phys Lett 91:9772–9776

    Google Scholar 

  • Yi D, Greve A, Hales JH et al (2008) Detection of adsorbed explosive molecules using thermal response of suspended microfabricated bridges. Appl Phys Lett 93:154102

    Article  Google Scholar 

  • Youssef S, Podlecki J, Al Asmar R et al (2009) MEMS scanning calorimeter with serpentine-shaped platinum resistors for characterizations of microsamples. IEEE J Microelectromech Syst 18:414–423

    Article  Google Scholar 

  • Yu X, Tang Q, Zhang H et al (2007) Design of high sensitivity cantilever and its monolithic integration with CMOS circuits. IEEE Sensors J 7:489–495

    Article  Google Scholar 

  • Zhou Y, Wang Z, Wang C et al (2009) Design, fabrication and characterization of a two-step released silicon dioxide piezoresistive microcantilever immunosensor. J Micromech Microeng 19:065026

    Article  Google Scholar 

  • Zhou Y, Johnson JL, Ural A, Xie H (2012) Localized growth of carbon nanotubes on CMOS substrate at room temperature using maskless post-CMOS processing. IEEE Trans Nanotechnol 11:16–20

    Article  Google Scholar 

  • Zribi A, Knobloch A, Rao A (2005) CO2 detection using carbon nanotube networks and micromachined resonant transducers. Appl Phys Lett 86:203112

    Article  Google Scholar 

  • Zuck A, Greenblatt J, Zifman A et al (2008) Explosive detection by microthermal analysis. J Energetic Mat 26:163–180

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheyao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry

Wang, Z., Ruan, W. (2017). Microcalorometers for Detection of Trace Energetic Chemicals. In: Huang, QA. (eds) Micro Electro Mechanical Systems. Micro/Nano Technologies, vol 2. Springer, Singapore. https://doi.org/10.1007/978-981-10-2798-7_22-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2798-7_22-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2798-7

  • Online ISBN: 978-981-10-2798-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics