Skip to main content

Micro Thermal Flow Sensor

  • Living reference work entry
  • First Online:
  • 304 Accesses

Part of the book series: Micro/Nano Technologies ((MNT,volume 2))

Abstract

Measurement of fluid mechanics is very important in various fields, and flow sensors have been widely applied to execute accurate and efficient measurements. Compared with other sensing principle, thermal flow sensors are based on convective heat transfer and take merits of simple structure and easy use and thus offer a practical solution for various fluidics applications. In this chapter, we describe mainly hot-film anemometer fabricated on polyimide substrate. Hot-film or hot-wire anemometer utilizes a thermal element that serves as both a joule heater and a temperature sensor. We introduce the principle of thermal flow sensing, design and fabrication of the micro hot-film flow sensor, the measurement methodology, and application cases by using the micro hot-film flow sensors.

This is a preview of subscription content, log in via an institution.

References

  • Bruschi P, Dei M, Piotto M (2009) A low-power 2-D wind sensor based on integrated flow meters. IEEE Sensors J 9(12):1688–1696

    Article  Google Scholar 

  • Bruun HH (1995) Hot-wire anemometry-principles and signal analysis. Oxford University Press, Tokyo/Oxford/New York

    Google Scholar 

  • Callegari S, Talamelli A, Zagnoni M, Golfarelli A, Rossi V, Tartagni M, Sangiorgi E (2004) Aircraft angle of attack and air speed detection by redundant strip pressure sensors. In: Proceedings of IEEE sensors. IEEE, pp 1526–1529

    Google Scholar 

  • Callegari S, Zagnoni M, Golfarelli A, Tartagni M, Talamelli A, Proli P, Rossetti A (2006) Aircraft angle of attack and air speed detection by redundant strip pressure sensors. Sensors Actuators A 130/131:155–165

    Article  Google Scholar 

  • Callegari S, Zagnoni M, Golfarelli A, Tartagni M, Talamelli A, Proli P, Rossetti A (2008) Experiments on aircraft flight parameter detection by on-skin sensors. Sensors Actuators A Phys 130-131:155–165

    Article  Google Scholar 

  • Cao Z, Zhu R, Que R-Y (2012) A wireless portable system with microsensors for monitoring respiratory diseases. IEEE Trans Biomed Eng 59(11):3110–3116

    Article  Google Scholar 

  • Chen J, Liu C (2003) Development and characterization of surface micromachined, out-of-plane hot-wire anemometer. J Microelectromech Syst 12(6):979–988

    Article  Google Scholar 

  • Chen J, Fan Z, Zou J, Engel J, Liu C (2003) Two-dimensional micromachined flow sensor array for fluid mechanics studies. J Aerosp Eng 16(2):85–97

    Article  Google Scholar 

  • Clifford L, Lau Y (1992) Neural networks: theoretical foundations and analysis. IEEE, New York

    Google Scholar 

  • de Bree H-E, Jansen HV, Lammerink TS, Krijnen GJ, Elwenspoek M (1999) Bi-directional fast flow sensor with a large dynamic range. J Micromech Microeng 9(2):186–189

    Article  Google Scholar 

  • Dziuda Ĺ (2015) Fiber-optic sensors for monitoring patient physiological parameters: a review of applicable technologies and relevance to use during magnetic resonance imaging procedures. J Biomed Opt 20(1):010901–010901

    Article  Google Scholar 

  • Fang Z (1999) Aircraft flight dynamics and automatic flight control. National Defense Industry Press, Beijing

    Google Scholar 

  • Fei H, Zhu R, Zhou Z, Wang J (2007) Aircraft flight parameter detection based on a neural network using multiple hot-film flow speed sensors. Smart Mater Struct 16(4):1239–1245

    Article  Google Scholar 

  • Folke M, Cernerud L, Ekström M, Hök B (2003) Critical review of non-invasive respiratory monitoring in medical care. Med Biol Eng Comput 41(4):377–383

    Article  Google Scholar 

  • Hagen FW, Seidel H (1994) Deutsche airbus flight test of rosemount smart probe for distributed air data systems. IEEE Aerosp Electron Syst Mag 9(4):7–14

    Article  Google Scholar 

  • Han D, Kim S, Park S (2008) Two-dimensional ultrasonic anemometer using the directivity angle of an ultrasonic sensor. Microelectron J 39(10):1195–1199

    Article  Google Scholar 

  • Hultmark M, Smits AJ (2010) Temperature corrections for constant temperature and constant current hot-wire anemometers. Meas Sci Technol 21(10):105404

    Article  Google Scholar 

  • Jiang P, Zhao S, Zhu R (2015) Smart sensing strip using monolithically integrated flexible flow sensor for noninvasively monitoring respiratory flow. Sensors 15(12):31738–31750

    Article  Google Scholar 

  • Kim S, Nam T, Park S (2004) Measurement of flow direction and velocity using a micromachined flow sensor. Sensors Actuators A Phys 114(2):312–318

    Article  Google Scholar 

  • King LV (1914) On the convection of heat from small cylinders in a stream of fluid: determination of the convection constants of small platinum wires with applications to hot-wire anemometry. Philos Trans R Soc Lond Ser A 214:373–432. Containing Papers of a Mathematical or Physical Character

    Article  Google Scholar 

  • Kushida CA, Littner MR, Morgenthaler T, Alessi CA, Bailey D, Coleman J Jr, Friedman L, Hirshkowitz M, Kapen S, Kramer M (2005) Practice parameters for the indications for polysomnography and related procedures: an update for 2005. Sleep 28(4):499–521

    Article  Google Scholar 

  • Lekakis I (1996) Calibration and signal interpretation for single and multiple hot-wire/hot-film probes. Meas Sci Technol 7(10):1313

    Article  Google Scholar 

  • Lian Y, Shyy W, Viieru D, Zhang B (2003) Membrane wing aerodynamics for micro air vehicles. Prog Aerosp Sci 39(6):425–465

    Article  Google Scholar 

  • Lin Q, Jiang F, Wang X-Q, Xu Y, Han Z, Tai Y-C, Lew J, Ho C-M (2004) Experiments and simulations of MEMS thermal sensors for wall shear-stress measurements in aerodynamic control applications. J Micromech Microeng 14(12):1640–1649

    Article  Google Scholar 

  • Liu P, Zhu R, Liu X, Zhang F, Zhou Z (2009a) A low-cost integrated micro system for flow velocity and direction measurement. Transducers 2009 - 15th International Conference on Solid-State Sensors, Actuators and Microsystems, p 276–279

    Google Scholar 

  • Liu P, Zhu R, Que R (2009b) A flexible flow sensor system and its characteristics for fluid mechanics measurements. Sensors 9(12):9533–9543

    Article  Google Scholar 

  • Nguyen N (1997) Micromachined flow sensors—a review. Flow Meas Instrum 8(1):7–16

    Article  MathSciNet  Google Scholar 

  • Nguyen N-T (2005) A novel thermal sensor concept for flow direction and flow velocity. IEEE Sensors J 5(6):1224–1234

    Article  Google Scholar 

  • Que R, Zhu R (2012) Aircraft aerodynamic parameter detection using micro hot-film flow sensor array and BP neural network identification. Sensors 12(8):10920–10929

    Article  Google Scholar 

  • Que R, Zhu R (2014) A two-dimensional flow sensor with integrated micro thermal sensing elements and a back propagation neural network. Sensors 14(1):564–574

    Article  Google Scholar 

  • Que R-Y, Zhu R (2015) A compact flexible thermal flow sensor for detecting two-dimensional flow vector. IEEE Sensors J 15(3):1931–1936

    Article  Google Scholar 

  • Que RY, Zhu R, Wei QZ, Cao Z (2011) Temperature compensation for thermal anemometers using temperature sensors independent of flow sensors. Meas Sci Technol 22(8):085404

    Article  Google Scholar 

  • Riedl X, Leuckert J, Engert M, Kupke W, Wagner R, Nitsche W, Abbas A, Bauer K (2013) Transition measurement with microstructured hot film sensor arrays on a laminar flow airfoil model. In: New results in numerical and experimental fluid mechanics VIII. Springer, Berlin, pp 641–648

    Chapter  Google Scholar 

  • Schena E, Massaroni C, Saccomandi P, Cecchini S (2015) Flow measurement in mechanical ventilation: a review. Med Eng Phys 37(3):257–264

    Article  Google Scholar 

  • Shen G-P, Qin M, Huang Q-A (2009) A system-level model for a silicon thermal flow sensor. Microsyst Technol 15(2):279–285

    Article  Google Scholar 

  • Shyy W, Berg M, Ljungqvist D (1999) Flapping and flexible wings for biological and micro air vehicles. Prog Aerosp Sci 35(5):455–506

    Article  Google Scholar 

  • Tardi G, Massaroni C, Saccomandi P, Schena E (2015) Experimental assessment of a variable orifice flowmeter for respiratory monitoring. J Sensors 2015: 752540

    Google Scholar 

  • Van Baar J, Wiegerink R, Lammerink T, Krijnen G, Elwenspoek M (2001) Micromachined structures for thermal measurements of fluid and flow parameters. J Micromech Microeng 11(4):311

    Article  Google Scholar 

  • Van Oudheusden B (1990) Silicon thermal flow sensor with a two-dimensional direction sensitivity. Meas Sci Technol 1(7):565–575

    Article  Google Scholar 

  • Van Oudheusden B, Van Herwaarden A (1990) High-sensitivity 2-D flow sensor with an etched thermal isolation structure. Sensors Actuators A Phys 22(1–3):425–430

    Article  Google Scholar 

  • Van Putten A, Middelhoek S (1974) Integrated silicon anemometer. Electron Lett 21(10):425–426

    Article  Google Scholar 

  • Whitmore SA (1991) Development of a pneumatic high-angle-of-attack flush airdata sensing (HI-FADS) system; National Aeronautics and Space Administration, Ames Research Center, Dryden Flight Research Facility

    Google Scholar 

  • Xu Y, Tai Y-C, Huang A, Ho C-M (2003) IC-integrated flexible shear-stress sensor skin. J Microelectromech Syst 12(5):740–747

    Article  Google Scholar 

  • Zhao S, Jiang P, Zhu R, Que R (2016) Wearable anemometer for 2D wind detection. 15th IEEE Sensors Conference, Sensors 2016, 7808599

    Google Scholar 

  • Zhu R, Que R, Cao Z (2013) Micro thermal flow sensors/systems on flexible PCB and extensive applications. In: 2013 8th IEEE international conference on nano/micro engineered and molecular systems (NEMS). IEEE, pp 179–182

    Google Scholar 

Download references

Acknowledgments

The works were supported by National Natural Science Foundation of China (Grant No. 51735007) and National High-tech Program “863” of China (Grant No. 2012AA02A604 and 2006AA04Z257).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry

Zhu, R. (2017). Micro Thermal Flow Sensor. In: Huang, QA. (eds) Micro Electro Mechanical Systems. Micro/Nano Technologies, vol 2. Springer, Singapore. https://doi.org/10.1007/978-981-10-2798-7_19-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2798-7_19-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2798-7

  • Online ISBN: 978-981-10-2798-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics