α,α-Difluorobenzylamines Deoxofluorination
- 140 Downloads
Introduction
α,α-Difluorobenzylamines are an important class of “N-CF2R” type deoxofluorination reagents. Among various α,α-difluorobenzylamines with different substitution groups, α,α-difluorobenzyl(dimethyl)amine (DBDA) was first used for the deoxofluorination of simple alcohols and carboxylic acids [1]. However, the deoxofluorination property of DBDA has not been systematically studied, and the thermal stability of DBDA was also not shown. In 2004, N,N-Diethyl-α,α-difluoro(meta-methylbenzyl)amine (DFMBA) was first reported as a deoxofluorination reagent by Hara and coworkers [2]. In the next few years, the deoxofluorination property of DFMBA was well studied. DFMBA is a commercially available colorless liquid with boiling point of 81–83 °C/4 mmHg. Accelerating rate calorimetry analysis (ARC) showed that it is stable at temperatures up to 180 °C and decomposes gradually at 210 °C [3]. However, DFMBA can be destroyed gradually by moisture in air; thus, it must be stored in the...
References
- 1.Dmowski, W.; Kamiński, M. J. Fluorine Chem. 1983, 23, 219–228.CrossRefGoogle Scholar
- 2.Kobayashi, S.; Yoneda, A.; Fukuhara, T.; Hara, S. Tetrahedron Lett. 2004, 45, 1287–1289.CrossRefGoogle Scholar
- 3.Yoshimura, T.; Fushimi, N.; Hidaka, T.; Kawai, K. WO 03/020685 A1 2003.Google Scholar
- 4.Hasek, W. R.; Smith, W. C.; Engelhardt, V. A. J. Am. Chem. Soc. 1960, 82, 543–551.CrossRefGoogle Scholar
- 5.(a) Dmowski, W.; Kamiński, M. J. Fluorine Chem. 1983, 23, 207–218. (b) Dmowski, W.; Kamiński, M. Pol. J. Chem. 1982, 56, 1369–1378.Google Scholar
- 6.Furuya, T.; Fukuhara, T.; Hara, S. J. Fluorine Chem. 2005, 126, 721–725.CrossRefGoogle Scholar
- 7.Fukuhara, T.; Hasegawa, C.; Hara, S. Synthesis 2007, 2007, 1528–1534.CrossRefGoogle Scholar
- 8.Sharts, C. M.; Sheppard, W. A. Org. React. 1974, 21, 160.Google Scholar
- 9.Lloyd, A. E.; Coe, P. L.; Walker, R. T.; Howarth, O. W. J. Fluorine Chem. 1993, 60, 239–250.CrossRefGoogle Scholar
- 10.Kobayashi, S.; Yoneda, A.; Fukuhara, T.; Hara, S. Tetrahedron 2004, 60, 6923–6930.CrossRefGoogle Scholar
- 11.Szarek, W. A.; Grynkiewicz, G.; Doboszewski, B.; Hay, G. W. Chem. Lett. 1984, 13, 1751–1754.CrossRefGoogle Scholar
- 12.Fujimoto, Y.; Iwata, M.; Imakita, N.; Shimoyama, A.; Suda, Y.; Kusumoto, S.; Fukase, K. Tetrahedron Lett. 2007, 48, 6577–6581.CrossRefGoogle Scholar
- 13.Yoneda, A.; Fukuhara, T.; Hara, S. Chem. Commun. 2005, 3589–3590.Google Scholar
- 14.Ahmed, M. M.; O’Doherty, G. A. Carbohydr. Res. 2006, 341, 1505–1521.CrossRefGoogle Scholar
- 15.Suwada, M.; Fukuhara, T.; Hara, S. J. Fluorine Chem. 2007, 128, 1121–1125.CrossRefGoogle Scholar
- 16.Nomoto, T.; Fukuhara, T.; Hara, S. Synlett 2006, 2006, 1744–1746.CrossRefGoogle Scholar
- 17.Wakita, N.; Hara, S. Tetrahedron 2010, 66, 7939–7945.CrossRefGoogle Scholar
- 18.Hamatani, T.; Matsubara, S.; Matsuda, H.; Schlosser, M. Tetrahedron 1988, 44, 2875–2881.CrossRefGoogle Scholar
- 19.Tavasli, M.; O’Hagan, D.; Pearson, C.; Petty, M. C. Chem. Commun. 2002, 1226–1227.Google Scholar
- 20.Yu, H.-W.; Nakano, Y.; Fukuhara, T.; Hara, S. J. Fluorine Chem. 2005, 126, 962–966.CrossRefGoogle Scholar
- 21.Sano, K.; Fukuhara, T.; Hara, S. J. Fluorine Chem. 2009, 130, 708–713.CrossRefGoogle Scholar