Living Edition
| Editors: Jinbo Hu, Teruo Umemoto

α,α-Difluorobenzylamines Deoxofluorination

Living reference work entry
DOI: https://doi.org/10.1007/978-981-10-1855-8_49-1


α,α-Difluorobenzylamines are an important class of “N-CF2R” type deoxofluorination reagents. Among various α,α-difluorobenzylamines with different substitution groups, α,α-difluorobenzyl(dimethyl)amine (DBDA) was first used for the deoxofluorination of simple alcohols and carboxylic acids [1]. However, the deoxofluorination property of DBDA has not been systematically studied, and the thermal stability of DBDA was also not shown. In 2004, N,N-Diethyl-α,α-difluoro(meta-methylbenzyl)amine (DFMBA) was first reported as a deoxofluorination reagent by Hara and coworkers [2]. In the next few years, the deoxofluorination property of DFMBA was well studied. DFMBA is a commercially available colorless liquid with boiling point of 81–83 °C/4 mmHg. Accelerating rate calorimetry analysis (ARC) showed that it is stable at temperatures up to 180 °C and decomposes gradually at 210 °C [3]. However, DFMBA can be destroyed gradually by moisture in air; thus, it must be stored in the...

This is a preview of subscription content, log in to check access.


  1. 1.
    Dmowski, W.; Kamiński, M. J. Fluorine Chem. 1983, 23, 219–228.CrossRefGoogle Scholar
  2. 2.
    Kobayashi, S.; Yoneda, A.; Fukuhara, T.; Hara, S. Tetrahedron Lett. 2004, 45, 1287–1289.CrossRefGoogle Scholar
  3. 3.
    Yoshimura, T.; Fushimi, N.; Hidaka, T.; Kawai, K. WO 03/020685 A1 2003.Google Scholar
  4. 4.
    Hasek, W. R.; Smith, W. C.; Engelhardt, V. A. J. Am. Chem. Soc. 1960, 82, 543–551.CrossRefGoogle Scholar
  5. 5.
    (a) Dmowski, W.; Kamiński, M. J. Fluorine Chem. 1983, 23, 207–218. (b) Dmowski, W.; Kamiński, M. Pol. J. Chem. 1982, 56, 1369–1378.Google Scholar
  6. 6.
    Furuya, T.; Fukuhara, T.; Hara, S. J. Fluorine Chem. 2005, 126, 721–725.CrossRefGoogle Scholar
  7. 7.
    Fukuhara, T.; Hasegawa, C.; Hara, S. Synthesis 2007, 2007, 1528–1534.CrossRefGoogle Scholar
  8. 8.
    Sharts, C. M.; Sheppard, W. A. Org. React. 1974, 21, 160.Google Scholar
  9. 9.
    Lloyd, A. E.; Coe, P. L.; Walker, R. T.; Howarth, O. W. J. Fluorine Chem. 1993, 60, 239–250.CrossRefGoogle Scholar
  10. 10.
    Kobayashi, S.; Yoneda, A.; Fukuhara, T.; Hara, S. Tetrahedron 2004, 60, 6923–6930.CrossRefGoogle Scholar
  11. 11.
    Szarek, W. A.; Grynkiewicz, G.; Doboszewski, B.; Hay, G. W. Chem. Lett. 1984, 13, 1751–1754.CrossRefGoogle Scholar
  12. 12.
    Fujimoto, Y.; Iwata, M.; Imakita, N.; Shimoyama, A.; Suda, Y.; Kusumoto, S.; Fukase, K. Tetrahedron Lett. 2007, 48, 6577–6581.CrossRefGoogle Scholar
  13. 13.
    Yoneda, A.; Fukuhara, T.; Hara, S. Chem. Commun. 2005, 3589–3590.Google Scholar
  14. 14.
    Ahmed, M. M.; O’Doherty, G. A. Carbohydr. Res. 2006, 341, 1505–1521.CrossRefGoogle Scholar
  15. 15.
    Suwada, M.; Fukuhara, T.; Hara, S. J. Fluorine Chem. 2007, 128, 1121–1125.CrossRefGoogle Scholar
  16. 16.
    Nomoto, T.; Fukuhara, T.; Hara, S. Synlett 2006, 2006, 1744–1746.CrossRefGoogle Scholar
  17. 17.
    Wakita, N.; Hara, S. Tetrahedron 2010, 66, 7939–7945.CrossRefGoogle Scholar
  18. 18.
    Hamatani, T.; Matsubara, S.; Matsuda, H.; Schlosser, M. Tetrahedron 1988, 44, 2875–2881.CrossRefGoogle Scholar
  19. 19.
    Tavasli, M.; O’Hagan, D.; Pearson, C.; Petty, M. C. Chem. Commun. 2002, 1226–1227.Google Scholar
  20. 20.
    Yu, H.-W.; Nakano, Y.; Fukuhara, T.; Hara, S. J. Fluorine Chem. 2005, 126, 962–966.CrossRefGoogle Scholar
  21. 21.
    Sano, K.; Fukuhara, T.; Hara, S. J. Fluorine Chem. 2009, 130, 708–713.CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina