Fluorination

Living Edition
| Editors: Jinbo Hu, Teruo Umemoto

2,2-Difluoro-1,3-Dimethylimidazolidine (DFI) Deoxofluorination

Living reference work entry
DOI: https://doi.org/10.1007/978-981-10-1855-8_48-1
  • 336 Downloads

Introduction

2,2-Difluoro-1,3-dimethylimidazolidine (DFI) was first reported as a novel deoxofluorination reagent by Hayashi and coworkers in 2002 [1]. It is a clear liquid with boiling point of 47 °C at 37 mmHg and melting point of −8.7 °C [1]. In terms of the chemical structure, DFI is similar to other α,α-difluoroalkylamine agents such as Yarovenko [2] and Ishikawa [3] agent. Accelerating rate calorimetry (ARC) analysis showed that thermal decomposition of DFI begins at 150 °C [1], while diethylaminosulfur trifluoride (DAST) decomposes at about 90 °C [4], indicating that DFI is much more thermally stable.

Deoxofluorination with DFI

DFI is more reactive than Yarovenko and Ishikawa agents due to the stabilizing effects endowed by the two nitrogen atoms adjacent to difluoromethylene. In addition to alcohols and carboxylic acids, aldehydes/ketones and even some phenols can be converted to the corresponding deoxofluorinated products. The reaction can be performed in acetonitrile,...
This is a preview of subscription content, log in to check access.

References

  1. 1.
    Hayashi, H.; Sonoda, H.; Fukumura, K.; Nagata, T. Chem. Commun. 2002, 1618–1619.Google Scholar
  2. 2.
    Yarovenko, N. N.; Raksha, M. A.; Shemanina, V. N.; Vasil'eva, A. S. Zh. Obshch. Khim. 1957, 27, 2246–2250.Google Scholar
  3. 3.
    Takaoka, A.; Iwakiri, H.; Ishikawa, N. Bull. Chem. Soc. Jpn. 1979, 52, 3377–3380.CrossRefGoogle Scholar
  4. 4.
    Messina, P. A.; Mange, K. C.; Middleton, W. J. J. Fluorine Chem. 1989, 42, 137–143.CrossRefGoogle Scholar
  5. 5.
    Hasek, W. R.; Smith, W. C.; Engelhardt, V. A. J. Am. Chem. Soc. 1960, 82, 543–551.CrossRefGoogle Scholar
  6. 6.
    Umemoto, T.; Singh, R. P.; Xu, Y.; Saito, N. J. Am. Chem. Soc. 2010, 132, 18199–18205.CrossRefGoogle Scholar
  7. 7.
    Kitazume, T.; Ebata, T. J. Fluorine Chem. 2004, 125, 1509–1511.Google Scholar
  8. 8.
    Tang, P.; Wang, W.; Ritter, T. J. Am. Chem. Soc. 2011, 133, 11482–11484.Google Scholar
  9. 9.
    Sladojevich, F.; Arlow, S. I.; Tang, P.; Ritter, T. J. Am. Chem. Soc. 2013, 135, 2470–2473.CrossRefGoogle Scholar
  10. 10.
    Fujimoto, T.; Becker, F.; Ritter, T. Org. Process Res. Dev. 2014, 18, 1041–1044.CrossRefGoogle Scholar
  11. 11.
    Fujimoto, T.; Ritter, T. Org. Lett. 2015, 17, 544–547.CrossRefGoogle Scholar
  12. 12.
    Goldberg, N. W.; Shen, X.; Li, J.; Ritter, T. Org. Lett. 2016, 18, 6102–6104.CrossRefGoogle Scholar
  13. 13.
    Umetani, H.; Sonoda, H.; Komatsu, H. Nucleosides, Nucleotides Nucleic Acids 2003, 22, 5–8.CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina