Fluorination

Living Edition
| Editors: Jinbo Hu, Teruo Umemoto

Fluorination of Methylenecyclopropanes for Preparing Alkenyl Fluorides

  • Liu-Zhu Yu
  • Min ShiEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-981-10-1855-8_37-1

Introduction

Methylenecyclopropanes (MCPs) and vinylidenecyclopropanes (VDCPs), as highly strained but easily accessible molecules, have been widely used in synthetic chemistry for the short construction of molecular complexity [ 1]. MCPs and VDCPs can undergo a variety of ring-opening reactions because the release of cyclopropyl ring strain provides a thermodynamic driving force and the π-character of the three-membered ring bonds affords the kinetic opportunity to initiate the unleashing of the strain [ 1a]. In the past decades, many structurally useful and diverse carbo- and heterocyclic compounds have been synthesized using MCPs and VDCPs as versatile synthons in the presence of transition metal catalysts and Lewis or Brønsted acid catalysts [ 2]. For the transition metal-mediated reactions, various metal-catalyzed pathways, such as oxidative addition to distant or proximal C–C bond [ 3] and regioselective hydrometallation [ 4] or carbometalation [ 5] of C=C bond via anti-Markovnikov or...
This is a preview of subscription content, log in to check access.

References

  1. 1.
    (a) de Meijere A (ed) (1988) Small ring compounds in organic synthesis III, Berlin. (b) Nakamura I, Yamamoto Y (2002) Transition metal-catalyzed reactions of methylenecyclopropanes. Adv Synth Catal 344:111. (c) Brandi A, Cicchi S, Cordero F M, Goti, A (2003) Heterocycles from alkylidenecyclopropanes. Chem Rev 103:1213. (d) Rubin M, Rubina M, Gevorgyan, V (2007) Transition metal chemistry of cyclopropenes and cyclopropanes. Chem Rev 107:3117. (e) Smolensky E, Kapon M, Eisen M S (2007) Intermolecular hydroamination of methylenecyclopropane catalyzed by group IV metal complexes. Organometallics 26:4510. (f) Masarwa A, Marek I (2010) Selectivity in metal-catalyzed carbon carbon bond cleavage of alkylidenecyclopropanes. Chem Eur J 16:9712. (g) Yang S, Yuan W, Xu Q, Shi M (2015) Iron(III)-catalyzed cycloisomerizations of acetal–vinylidenecyclopropanes: an efficient synthetic route to 1,2-disubstituted cyclobutenes. Chem Eur J 21:15964. (h) Yang S, Rui KH, Tang XY, Xu Q, Shi M (2017) Rhodium/Silver synergistic catalysis in highly enantioselective cycloisomerization/cross coupling of keto-vinylidenecyclopropanes with terminal alkynes. J Am Chem Soc 139:5957.Google Scholar
  2. 2.
    (a) Shi M, Shao LX, Lu JM, Wei Y, Mizuno K, Maeda H (2010) Chemistry of vinylidenecyclopropanes. Chem Rev 110:5883. (b) Shi M, Lu JM, Wei Y, Shao LX (2012) Rapid generation of molecular complexity in the Lewis or Brønsted acid-mediated reactions of methylenecyclopropanes. Acc Chem Res 45:641. (c) Zhang DH, Tang XY, Shi M (2014) Gold-catalyzed tandem reactions of methylenecyclopropanes and vinylidenecyclopropanes. Acc Chem Res 47:913.Google Scholar
  3. 3.
    (a) Noyori R, Kumagai Y, Umeda I, Takaya H (1972) Nickel(0)-catalyzed reaction of methylenecyclopropane with olefins: orientation and stereochemistry. J Am Chem Soc 94:4018. (b) Suginome M, Matsuda T, Ito Y (2000) Palladium- and Platinum-catalyzed silaboration of methylenecyclopropanes through selective proximal or distal C−C bond cleavage. J Am Chem Soc 122:11015. (c) Ma S, Lu L, Zhang J (2004) Catalytic regioselectivity control in ring-opening cycloisomerization of methylene- or alkylidenecyclopropyl ketones. J Am Chem Soc 126:9645. (d) Yao B, Li Y, Liang Z, Zhang Y (2011) Ni-catalyzed intramolecular cycloaddition of methylenecyclopropanes to alkynes. Org Lett 13:640. (e) Saya L, Fernández I, López F, Mascareñas JL (2014) Nickel-catalyzed intramolecular [3 + 2 + 2] cycloadditions of alkylidenecyclopropanes. A straightforward entry to fused 6,7,5-tricyclic systems. Org Lett 16:5008. (f) Inglesby PA, Bacsa J, Negru DE, Evans PA (2014) The isolation and characterization of a rhodacycle intermediate implicated in metal-catalyzed reactions of alkylidenecyclopropanes. Angew Chem Int Ed 53:3952.Google Scholar
  4. 4.
    (a) Bessmertnykh AG, Blinov KA, Grishin YK, Donskaya NA, Tveritinova EV, Yur’eva NM, Beletskaya IP (1997) Synthesis of mono-, di-, and trisilyl-substituted alkenes via the hydrosilylation of methylenecyclopropanes catalyzed by Rh(I) complexes. J Org Chem 62:6069. (b) Nakamura I, Saito S, Yamamoto Y (2000) Hydrofurylation of alkylidenecyclopropanes catalyzed by palladium. J Am Chem Soc 122:2661. (c) Siriwardana AI, Kamada M, Nakamura I, Yamamoto Y (2005) Palladium-catalyzed addition of nitrogen pronucleophiles to alkylidenecyclopropanes. J Org Chem 70:5932.Google Scholar
  5. 5.
    (a) Bräse S, de Meijere A (1995) Unprecedented intra- and intermolecular palladium-catalyzed coupling reactions with methylenecyclopropane-type tetrasubstituted alkenes. Angew Chem Int Ed Engl 34:2545. (b) Ang KH, Bräse S, Steinig, AG, Meyer, FE, Llebaria A, Voigt K, de Meijere A (1996) Versatile synthesis of bicyclo[4.3.0]nonenes and bicyclo[4.4.0]decenes by a domino Heck-Diels-Alder reaction. Tetrahedron 52:11503. (c) Zhang DH, Wei Y, Shi M (2012) Gold(I)-catalyzed cycloisomerization of nitrogen- and oxygen-tethered alkylidenecyclopropanes to tricyclic compounds. Chem Eur J 18:7026. (d) Zheng H, Felix RJ, Gagné MR (2014) Gold-catalyzed enantioselective ring-expanding cycloisomerization of cyclopropylidene bearing 1,5-enynes. Org Lett 16:2272.Google Scholar
  6. 6.
    (a) Shi M, Xu B, Huang JW (2004) Lewis acid-mediated cycloaddition of methylenecyclopropanes with aldehydes and imines: a facile access to indene, THF, and pyrrolidine skeletons via homoallylic rearrangement protocol. Org Lett 6:1175. (b) Huang JW, Shi M. (2004) Brønsted acid TfOH-mediated reactions of methylenecyclopropanes with nitriles. Synlett 2343. (c) Sun R, Zhang DH, Shi M (2014) Lewis acid catalyzed intramolecular ring-opening of triazole-substituted methylenecyclopropanes: an approach to 4H-[1,2,3]triazolopyrazines and 4H-[1,2,3]triazolo[1,4]diazepines. Synlett 25:2293.Google Scholar
  7. 7.
    (a) Shimizu M, Hiyama T (2005) Modern synthetic methods for fluorine-substituted target molecules. Angew Chem Int Ed 44:214. (b) Müller K, Faeh C, Diederich F (2007) Fluorine in pharmaceuticals: looking beyond intuition. Science 317:1881.Google Scholar
  8. 8.
    (a) Dolbier WR Jr, Fielder TH Jr (1978) Thermal isomerization of 2,2-difluoromethylenecyclopropane. J Am Chem Soc 100:5577. (b) Dolbier WR Jr, Gautriaud E, Cai X (2005) Competitive kinetic processes in the thermal rearrangement of 1,1-difluoro-2-(dideuteriomethylene)-cyclopropane. J Fluorine Chem 126:339.Google Scholar
  9. 9.
    Dolbier WR Jr, Sellers, SF, Al-Sader BH, Smart, BE (1980) Synthesis and thermal isomerization of 2,2,3,3-tetrafluoromethylenecyclopropane. J Am Chem Soc 102:5398.CrossRefGoogle Scholar
  10. 10.
    Jiang M, Shi M (2009) Reactions of methylenecyclopropanes and vinylidenecyclopropanes with N-fluorodibenzenesulfonimide. Tetrahedron 65:5222.CrossRefGoogle Scholar
  11. 11.
    Nyffeler PT, Durón SG, Burkart MD, Vincent SP, Wong, CH (2004) Selectfluor: mechanistic insight and applications. Angew Chem Int Ed 44:192.CrossRefGoogle Scholar
  12. 12.
    Fu W, Zou G, Zhu M, Hong D, Deng D, Xun C, Ji B (2009) Stereoselective fluorination of methylenecyclopropanes with N-F reagents: A modular entry to γ-fluorohomoallylic sulfonimides and γ-fluorohomoallylic amides. J Fluorine Chem 130:996.CrossRefGoogle Scholar
  13. 13.
    Yang Y, Su C, Huang X, Liu Q (2009) Halohydroxylation of alkylidenecyclopropanes using N-halosuccinimide (NXS) as the halogen source: an efficient synthesis of halocyclopropylmethanol and 3-halobut-3-en-1-ol derivatives. Tetrahedron Lett 50:5754.CrossRefGoogle Scholar
  14. 14.
    Yuan W, Shi M (2011) Halogenation reagents initiating ring opening of vinylidenecyclopropanes: easy access to halogenated tetrahydropyrans. Synlett 2011:995.CrossRefGoogle Scholar
  15. 15.
    (a) Chen K, Liu JX, Tang XY, Shi M (2016) A selective RhI-catalyzed substrate-controlled C−C bond activation of benzyl sulfonamide/alcohol-tethered alkylidenecyclopropanes. Chem Eur J 22: 11549. (b) Yu LZ, Chen K, Zhu ZZ, Shi M (2017) Recent advances in the chemical transformations of functionalized alkylidenecyclopropanes (FACPs). Chem Commun 53:5935.Google Scholar
  16. 16.
    (a) Yu LZ, Hu XB, Xu Q, Shi M (2016) Thermally induced formal [3+2] cyclization of ortho-aminoaryl-tethered alkylidenecyclopropanes: facile synthesis of furoquinoline and thienoquinoline derivatives. Chem Commun 52:2701. (b) Yu LZ, Zhu ZZ, Hu XB, Tang XY, Shi M (2016) Palladium-catalyzed cascade cyclization of allylamine-tethered alkylidenecyclopropanes: facile access to iodine/difluoromethylene- and perfluoroalkyl-containing 1-benzazepine scaffolds. Chem Commun 52:6581. (e) Yu LZ, Wei Y, Shi M (2016) Copper-catalyzed cascade cyclization of 1,5-enynes via consecutive trifluoromethylazidation/diazidation and click reaction: self-assembly of triazole fused isoindolines. Chem Commun 52:13163. (d) Yu LZ, Xu Q, Tang XY, Shi M (2016) Iron- or copper-catalyzed trifluoromethylation of acrylamide-tethered alkylidenecyclopropanes: facile synthesis of CF3-containing polycyclic benzazepine derivatives. ACS Catal 6:526. (e) Yu LZ, Wei Y, Shi M (2017) Synthesis of polysubstituted polycyclic aromatic hydrocarbons by gold-catalyzed cyclization−oxidation of alkylidenecyclopropane-containing 1,5-enynes. ACS Catal 7:4242.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Organometallic Chemistry, University of Chinese Academy of ScienceShanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina