Skip to main content

Nickel-Mediated Fluorination for Preparing Aryl Fluorides

  • Living reference work entry
  • First Online:
Fluorination

Part of the book series: Synthetic Organofluorine Chemistry ((SYOC))

  • 876 Accesses

Introduction

Practical methods for aryl fluoride synthesis are of great interest for a number of applications. The limitations of the classical means of aryl fluoride synthesis, such as the Balz-Schiemann reaction and nucleophilic aromatic substitution, have stimulated a burst of research into the use of transition metals for aromatic fluorination [1,2,3,4]. Among the transition metals shown to be useful for aryl fluoride bond formation are copper, silver, palladium, and nickel. Of these, the fluorination reactivity of nickel is perhaps least advanced, especially in comparison to its group 10 cousin palladium (see chapter “Palladium-mediated Fluorination for Preparing Aryl Fluorides”). However, nickel-mediated aromatic fluorination has managed to find an application in the synthesis of 18F-labeled aryl fluoride PET tracers.

On top of the well-understood fundamental challenges involved in the preparation of aryl fluorides, the synthesis of 18F-labeled PET tracers lays additional...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Campbell, M. G. & Ritter, T. (2015) Modern Carbon–Fluorine Bond Forming Reactions for Aryl Fluoride Synthesis. Chemical Reviews 115, 612–633, https://doi.org/10.1021/cr500366b.

    Article  CAS  Google Scholar 

  2. Furuya, T., Klein, J. E. M. N. & Ritter, T. Carbon-Fluorine Bond Formation for the Synthesis of Aryl Fluorides. Synthesis 2010, 1804–1821, https://doi.org/10.1055/s-0029-1218742 (2010).

    Article  Google Scholar 

  3. Furuya, T., Kamlet, A. S. & Ritter, T. Catalysis for fluorination and trifluoromethylation. Nature 473, 470–477 (2011).

    Article  CAS  Google Scholar 

  4. Brown, J. M. & Gouverneur, V. Transition-Metal-Mediated Reactions for C sp 2-F Bond Construction: The State of Play. Angewandte Chemie International Edition 48, 8610–8614, https://doi.org/10.1002/anie.200902121 (2009).

    Article  CAS  Google Scholar 

  5. Ametamey, S. M., Honer, M. & Schubiger, P. A. Molecular Imaging with PET. Chemical Reviews 108, 1501–1516, https://doi.org/10.1021/cr0782426 (2008).

    Article  CAS  Google Scholar 

  6. Preshlock, S., Tredwell, M. & Gouverneur, V. 18F-Labeling of Arenes and Heteroarenes for Applications in Positron Emission Tomography. Chemical Reviews 116, 719–766, https://doi.org/10.1021/acs.chemrev.5b00493 (2016).

    Article  CAS  Google Scholar 

  7. Lee, E. et al. A Fluoride-Derived Electrophilic Late-Stage Fluorination Reagent for PET Imaging. Science 334, 639–642, https://doi.org/10.1126/science.1212625 (2011).

    Article  CAS  Google Scholar 

  8. Furuya, T., Kaiser, H. M. & Ritter, T. Palladium-Mediated Fluorination of Arylboronic Acids. Angewandte Chemie International Edition 47, 5993–5996, https://doi.org/10.1002/anie.200802164 (2008).

    Article  CAS  Google Scholar 

  9. Furuya, T. & Ritter, T. Carbon−Fluorine Reductive Elimination from a High-Valent Palladium Fluoride. Journal of the American Chemical Society 130, 10060–10061, https://doi.org/10.1021/ja803187x (2008).

    Article  CAS  Google Scholar 

  10. Furuya, T. et al. Mechanism of C−F Reductive Elimination from Palladium(IV) Fluorides. Journal of the American Chemical Society 132, 3793–3807, https://doi.org/10.1021/ja909371t (2010).

    Article  CAS  Google Scholar 

  11. Kamlet, A. S. N., Constanze N.; Lee, Eunsung; Carlin, S. M.; Moseley, Christian K.; Stephenson, Nickeisha; Hooker, Jacob M.; Ritter, Tobias. (2013) Application of Palladium-Mediated 18F-Fluorination to PET Radiotracer Development: Overcoming Hurdles to Translation. PLoS ONE 8, https://doi.org/10.1371/journal.pone.0059187 .

  12. Lee, E., Hooker, J. M. & Ritter, T. (2012) Nickel-Mediated Oxidative Fluorination for PET with Aqueous [18F] Fluoride. Journal of the American Chemical Society 134, 17456–17458, https://doi.org/10.1021/ja3084797.

    Article  CAS  Google Scholar 

  13. Hoover, A. J. et al. A Transmetalation Reaction Enables the Synthesis of [18F]5-Fluorouracil from [18F]Fluoride for Human PET Imaging. Organometallics 35, 1008–1014, https://doi.org/10.1021/acs.organomet.6b00059 (2016).

    Article  CAS  Google Scholar 

  14. Truong, T., Klimovica, K. & Daugulis, O. Copper-Catalyzed, Directing Group-Assisted Fluorination of Arene and Heteroarene C–H Bonds. Journal of the American Chemical Society 135, 9342–9345, https://doi.org/10.1021/ja4047125 (2013).

    Article  CAS  Google Scholar 

  15. Ye, Y., Schimler, S. D., Hanley, P. S. & Sanford, M. S. Cu(OTf)2-Mediated Fluorination of Aryltrifluoroborates with Potassium Fluoride. Journal of the American Chemical Society 135, 16292–16295, https://doi.org/10.1021/ja408607r (2013).

    Article  CAS  Google Scholar 

  16. Tredwell, M. et al. A General Copper-Mediated Nucleophilic 18F Fluorination of Arenes. Angewandte Chemie International Edition 53, 7751–7755, https://doi.org/10.1002/anie.201404436 (2014).

    Article  CAS  Google Scholar 

  17. Kumar, V. et al. (2016) Noninvasive Assessment of Losartan-Induced Increase in Functional Microvasculature and Drug Delivery in Pancreatic Ductal Adenocarcinoma. Translational Oncology 9, 431–437, https://doi.org/10.1016/j.tranon.2016.07.004.

    Article  Google Scholar 

  18. Schley, N. D. & Fu, G. C. Nickel-Catalyzed Negishi Arylations of Propargylic Bromides: A Mechanistic Investigation. Journal of the American Chemical Society 136, 16588–16593, https://doi.org/10.1021/ja508718m (2014).

    Article  CAS  Google Scholar 

  19. Chatt, J. & Shaw, B. L. (1960) 345. Alkyls and aryls of transition metals. Part III. Nickel(II) derivatives. Journal of the Chemical Society (Resumed), 1718–1729, https://doi.org/10.1039/JR9600001718.

  20. Kurosawa, H. et al. Preparation and reductive elimination of (.eta.3-allyl)(aryl)nickel(II) complexes: unusually facile .eta.3-allyl-aryl coupling on nickel having an 18-electron configuration. Organometallics 9, 3038–3042, https://doi.org/10.1021/om00162a014 (1990).

    Article  CAS  Google Scholar 

  21. Volpe, E. C., Manke, D. R., Bartholomew, E. R., Wolczanski, P. T. & Lobkovsky, E. B. Aryl−Oxazoline Chelates of First-Row Transition Metals: Structures of {κ-C,N-(o-C6H4)CMe2(COCH2CMe2N)}FeCl(py) and [(κ-C,N-(o-C6H4)CMe2(COCH2CMe2N)}Cr(μ-Cl)]2. Organometallics 29, 6642–6652, https://doi.org/10.1021/om100420z (2010).

  22. Han, F.-S. Transition-metal-catalyzed Suzuki-Miyaura cross-coupling reactions: a remarkable advance from palladium to nickel catalysts. Chemical Society Reviews 42, 5270–5298, https://doi.org/10.1039/C3CS35521G (2013).

    Article  CAS  Google Scholar 

  23. Fier, P. S., Luo, J. & Hartwig, J. F. Copper-Mediated Fluorination of Arylboronate Esters. Identification of a Copper(III) Fluoride Complex. Journal of the American Chemical Society 135, 2552–2559, https://doi.org/10.1021/ja310909q (2013).

    Article  CAS  Google Scholar 

  24. Casitas, A., Canta, M., Solà, M., Costas, M. & Ribas, X. Nucleophilic Aryl Fluorination and Aryl Halide Exchange Mediated by a CuI/CuIII Catalytic Cycle. Journal of the American Chemical Society 133, 19386–19392, https://doi.org/10.1021/ja2058567 (2011).

    Article  CAS  Google Scholar 

  25. Lee, H.; Börgel, J.; Ritter, Tobias. Carbon–Fluorine Reductive Elimination from Nickel(III). Angewandte Chemie International Edition, https://doi.org/10.1002/anie.201701552R2 (2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory B. Boursalian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry

Boursalian, G.B., Ritter, T. (2018). Nickel-Mediated Fluorination for Preparing Aryl Fluorides. In: Hu, J., Umemoto, T. (eds) Fluorination. Synthetic Organofluorine Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-10-1855-8_35-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1855-8_35-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1855-8

  • Online ISBN: 978-981-10-1855-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics