Skip to main content

Fluolead (Ar-SF3) Deoxofluorination

  • Living reference work entry
  • First Online:
Fluorination

Part of the book series: Synthetic Organofluorine Chemistry ((SYOC))

  • 448 Accesses

Introduction

Fluorine has become a crucial element in medicinal chemistry, and nowadays, 20–25% of marked drugs are estimated to contain at least one fluorine atom in their structures. Introduction of fluorine into biologically active organic molecules significantly affects their lipophilicity, solubility, acidity, and basicity causing the modulation and/or improvement of their binding affinity, pharmacokinetic properties, and bioavailability [14, 24, 31, 39]. Therefore, numerous efforts have concentrated on the development of effective methods for fluorination reactions. Fluorinating reagents are one of the keys for the success of the transformation [1, 2, 5, 9, 11, 23, 25, 42, 43]. A variety of deoxofluorinating reagents have been developed for this purpose, which enable oxygen-containing compounds such as alcohols and carbonyls to be transformed into corresponding fluorides.

Deoxofluorinating reagents are divided into next categories: α-fluorinated alkylamines (NCF reagents) and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ahrens T, Kohlmann J, Ahrens M, Braun T (2015) Functionalization of fluorinated molecules by transition-metal-mediated C-F bond activation to access fluorinated building blocks. Chem Rev 115 (2):931–972. https://doi.org/10.1021/cr500257c

    Article  CAS  Google Scholar 

  2. Alonso C, Martínez de Marigorta E, Rubiales G, Palacios F (2015) Carbon trifluoromethylation reactions of hydrocarbon derivatives and heteroarenes. Chem Rev 115(4):1847–1935. https://doi.org/10.1021/cr500368h

  3. Beaulieu F, Beauregard L-P, Courchesne G, Couturier M, LaFlamme F, L’Heureux A (2009) Aminodifluorosulfinium tetrafluoroborate salts as stable and crystalline deoxofluorinating reagents. Org Lett 11 (21):5050–5053. https://doi.org/10.1021/ol902039q

  4. Bresciani S, O’Hagan D (2010) Stereospecific benzylic dehydroxyfluorination reactions using Bio’s TMS-amine additive approach with challenging substrates. Tetrahedron Letters 51 (44):5795–5797. https://doi.org/10.1016/j.tetlet.2010.08.104

    Article  CAS  Google Scholar 

  5. Campbell MG, Ritter T (2015) Modern carbon-fluorine bond forming reactions for aryl fluoride synthesis. Chem Rev 115 (2):612–633. https://doi.org/10.1021/cr500366b

    Article  CAS  Google Scholar 

  6. Chamberlain DL, Kharasch N (1955) Derivatives of sulfenic acids. XVIII. Synthesis of 2,4-dinitrophenyl sulfur trifluoride and of antimony(III) halide adducts with p-toluenesulfenyl chloride1. J Am Chem Soc 77 (4):1041–1043. https://doi.org/10.1021/ja01609a074

  7. Chambers RD, Holling D, Spink RCH, Sandford G (2001) Elemental fluorine Part 13. Gas-liquid thin film microreactors for selective direct fluorination. Lab Chip 1 (2):132–137. https://doi.org/10.1039/B108841F

  8. Chang Y, Tewari A, Adi A-I, Bae C (2008) Direct nucleophilic fluorination of carbonyl groups of benzophenones and benzils with Deoxofluor. Tetrahedron 64 (42):9837–9842. https://doi.org/10.1016/j.tet.2008.08.009

    Article  CAS  Google Scholar 

  9. Charpentier J, Fruh N, Togni A (2015) Electrophilic trifluoromethylation by use of hypervalent iodine reagents. Chem Rev 115 (2):650–682. https://doi.org/10.1021/cr500223h

    Article  CAS  Google Scholar 

  10. Cossy J, Déchamps I, Gomez Pardo D (2007) Synthesis of optically active substituted 3-fluoropiperidines from prolinols by using DAST. Synlett 2007 (2):0263–0267. https://doi.org/10.1055/s-2007-967989

  11. Cresswell AJ, Davies SG, Roberts PM, Thomson JE (2015) Beyond the Balz-Schiemann reaction: the utility of tetrafluoroborates and boron trifluoride as nucleophilic fluoride sources. Chem Rev 115 (2):566–611. https://doi.org/10.1021/cr5001805

    Article  CAS  Google Scholar 

  12. Déchamps I, Gomez Pardo D, Cossy J (2007) Ring expansion induced by DAST: Synthesis of substituted 3-fluoropiperidines from prolinols and 3-fluoroazepanes from 2-hydroxymethylpiperidines. Eur J Org Chem 2007 (25):4224–4234. https://doi.org/10.1002/ejoc.200700237

  13. Bellavance G, Dubé P, Nguyen B (2012) Tetramethylfluoroformamidinium hexafluorophosphate (TFFH) as a mild deoxofluorination reagent. Synlett 23 (04):569–574. https://doi.org/10.1055/s-0031-1290336

  14. Filler R, Saha R (2009) Fluorine in medicinal chemistry: a century of progress and a 60-year retrospective of selected highlights. Future Med Chem 1:777–791. https://doi.org/10.4155/fmc.09.65

  15. Fukumura K, Sonoda H, Hayashi H, Kusumoto M (2004) Process for producing α,α-difluorocycloalkane compound. US Patent 6,686,509 B2, 3 Feb 2004

    Google Scholar 

  16. Furuya T, Nomoto T, Fukuhara T, Hara S (2009) Fluorination of alcohols and diols with a novel fluorous deoxy-fluorination reagent. J Fluorine Chem 130 (3):348–353. https://doi.org/10.1016/j.jfluchem.2008.12.010

    Article  CAS  Google Scholar 

  17. Hasek WR, Smith WC, Engelhardt VA (1960) The chemistry of sulfur tetrafluoride. II. The fluorination of organic carbonyl compounds 1. J Am Chem Soc 82 (3):543–551. https://doi.org/10.1021/ja01488a012

  18. Hugenberg V, Frȍhlich R, Haufe G (2010) Oxidative desulfurization-fluorination of thioethers. Application for the synthesis of fluorinated nitrogen containing building blocks. Org Biomol Chem 8 (24):5682–5691. https://doi.org/10.1039/c0ob00560f

  19. Kirsch P, Bremer M, Huber F, Lannert H, Ruhl A, Lieb M, Wallmichrath T (2001) Nematic liquid crystals with a tetrafluoroethylene bridge in the mesogenic core structure. J Am Chem Soc 123 (23):5414–5417. https://doi.org/10.1021/ja010024l

  20. Kobayashi S, Yoneda A, Fukuhara T, Hara S (2004) Deoxyfluorination of alcohols using N,N-diethyl-α,α-difluoro-(m-methylbenzyl)amine. Tetrahedron 60 (32):6923–6930. https://doi.org/10.1016/j.tet.2004.05.089

  21. Lal GS, Pez GP, Pesaresi RJ, Prozonic FM, Cheng H (1999) Bis(2-methoxyethyl)aminosulfur trifluoride: A new broad-spectrum deoxofluorinating agent with enhanced thermal stability. J Org Chem 64 (19):7048–7054. https://doi.org/10.1021/jo990566+

  22. Li L, Ni C, Wang F, Hu J (2016) Deoxyfluorination of alcohols with 3,3-difluoro-1,2-diarylcyclopropenes. Nat Commun 7:13320. https://doi.org/10.1038/ncomms13320

    Article  Google Scholar 

  23. Liu X, Xu C, Wang M, Liu Q (2015) Trifluoromethyltrimethylsilane: nucleophilic trifluoromethylation and beyond. Chem Rev 115 (2):683–730. https://doi.org/10.1021/cr400473a

    Article  CAS  Google Scholar 

  24. Muller K, Faeh C, Diederich F (2007) Fluorine in pharmaceuticals: Looking beyond intuition. Science 317 (5846):1881–1886. https://doi.org/10.1126/science.1131943

    Article  Google Scholar 

  25. Ni C, Hu M, Hu J (2015) Good partnership between sulfur and fluorine: sulfur-based fluorination and fluoroalkylation reagents for organic synthesis. Chem Rev 115 (2):765–825. https://doi.org/10.1021/cr5002386

    Article  CAS  Google Scholar 

  26. Nielsen MK, Ugaz CR, Li W, Doyle AG (2015) PyFluor: A low-cost, stable, and selective deoxyfluorination reagent. J Am Chem Soc 137 (30):9571–9574. https://doi.org/10.1021/jacs.5b06307

  27. Nomoto T, Fukuhara T, Hara S (2006) Synthesis of (fluoroalkyl)amines by deoxyfluorination of amino alcohols. Synlett 2006 (11):1744–1746. https://doi.org/10.1055/s-2006-947316

  28. Ou X, Janzen AF (2000) Oxidative fluorination of S, Se and Te compounds. J Fluorine Chem 101 (2):279–283. https://doi.org/10.1016/S0022-1139(99)00171-2

    Article  CAS  Google Scholar 

  29. Pashinnik VE, Martyniuk EG, Tabachuk MR, Shermolovich YG, Yagupolskii LM (2003) A new method for the synthesis of organosulfur trifluorides. Synth Commun 33 (14):2505–2509. https://doi.org/10.1081/SCC-120021841

  30. Posner GH, Haines SR (1985) A convenient, one-step, high-yield replacement of an anomeric hydroxyl group by a fluorine atom using dast. Preparation of glycosyl fluorides. Tetrahedron Lett 26 (1):5–8. https://doi.org/10.1016/S0040-4039(00)98451-X

    Article  CAS  Google Scholar 

  31. Purser S, Moore PR, Swallow S, Gouverneur V (2008) Fluorine in medicinal chemistry. Chem Soc Rev 37 (2):320–330. https://doi.org/10.1039/b610213c

    Article  CAS  Google Scholar 

  32. Sheppard WA (1960) Arylsulfur trifluorides and pentafluorides. J Am Chem Soc 82 (17):4751–4752. https://doi.org/10.1021/ja01502a083

  33. Sheppard WA (1962) Alkyl- and arylsulfur trifluorides. J Am Chem Soc 84 (16):3058–3063. https://doi.org/10.1021/ja00875a005

  34. Singh RP, Umemoto T (2011) 4-Fluoropyrrolidine-2-carbonyl fluorides: useful synthons and their facile preparation with 4-tert-butyl-2,6-dimethylphenylsulfur trifluoride. J Org Chem 76 (9):3113–3121. https://doi.org/10.1021/jo1025783

  35. Sladojevich F, Arlow SI, Tang P, Ritter T (2013) Late-stage deoxyfluorination of alcohols with PhenoFluor. J Am Chem Soc 135 (7):2470–2473. https://doi.org/10.1021/ja3125405

  36. Suwada M, Fukuhara T, Hara S (2007) Selective mono-fluorination of diols via a cyclic acetal of N,N-diethyl-4-methoxybenzamide. J Fluorine Chem 128 (10):1121–1125. https://doi.org/10.1016/j.jfluchem.2007.04.020

  37. Takaoka A, Iwakiri H, Shikawa N (1979) F-Propene-dialkylamine reaction products as fluorinating agents. Bull Chem Soc Jpn 52(11):3377–3380. https://doi.org/10.1246/bcsj.52.3377

  38. Umemoto T, Singh RP, Xu Y, Saito N (2010) Discovery of 4-tert-butyl-2,6-dimethylphenylsulfur trifluoride as a deoxofluorinating agent with high thermal stability as well as unusual resistance to aqueous hydrolysis, and its diverse fluorination capabilities including deoxofluoro-arylsulfinylation with high stereoselectivity. J Am Chem Soc 132 (51):18199–18205. http://pubs.acs.org/doi/abs/10.1021/ja106343h

  39. Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H (2014) Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001-2011). Chem Rev 114(4):2432–2506. https://doi.org/10.1021/cr4002879

  40. Weigert FJ (1980) Fluorine magnetic resonance spectra of monofluoro- and difluoro-substituted hydrocarbons. J Org Chem 45 (17):3476–3483. https://doi.org/10.1021/jo01305a022

    Article  CAS  Google Scholar 

  41. Xu W, Martinez H, Dolbier WR (2011) Arylsulfur trifluorides: Improved method of synthesis and use as in situ deoxofluorination reagents. J Fluorine Chem 132(7):482–488. https://doi.org/10.1016/j.jfluchem.2011.05.001

  42. Xu XH, Matsuzaki K, Shibata N (2015) Synthetic methods for compounds having CF3-S units on carbon by trifluoromethylation, trifluoromethylthiolation, triflylation, and related reactions. Chem Rev 115 (2):731–764. https://doi.org/10.1021/cr500193b

  43. Yang X, Wu T, Phipps RJ, Toste FD (2015) Advances in catalytic enantioselective fluorination, mono-, di-, and trifluoromethylation, and trifluoromethylthiolation reactions. Chem Rev 115 (2):826–870. https://doi.org/10.1021/cr500277b

    Article  CAS  Google Scholar 

  44. Ye C, Shreeve JnM (2004) Rearrangements accompanying fluorination of 2-amino alcohols and 1,2-diols with Deoxo-Fluor™. J Fluorine Chem 125 (12):1869–1872. https://doi.org/10.1016/j.jfluchem.2004.06.013

    Article  CAS  Google Scholar 

  45. Yoneda A, Fukuhara T, Hara S (2005) Selective monofluorination of diols using DFMBA. Chem Commun (28):3589–3590. https://doi.org/10.1039/B502471D

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norio Shibata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry

Cui, B., Shibata, N. (2018). Fluolead (Ar-SF3) Deoxofluorination. In: Hu, J., Umemoto, T. (eds) Fluorination. Synthetic Organofluorine Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-10-1855-8_17-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1855-8_17-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1855-8

  • Online ISBN: 978-981-10-1855-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics