Fluorination

Living Edition
| Editors: Jinbo Hu, Teruo Umemoto

Fluorination of Diaryliodonium Salts for Preparing Aryl Fluorides

  • Wenchao QuEmail author
  • Ximin LiEmail author
Living reference work entry

Latest version View entry history

DOI: https://doi.org/10.1007/978-981-10-1855-8_12-2

Introduction

Diaryliodonium salts are a class of hypervalent iodine (III) reagents that have been known since 1894 (Fig. 1) [ 14]. Although the term “salt” is commonly used, the T-shaped form shown by X-ray structures illustrates that these iodine (III) compounds have more covalent bond characteristics. “Diaryl-λ 3-iodanes” is the nomenclature from IUPAC for this type of molecule [ 25, 36, 45, 46, 48]. Diaryliodonium salts with tetrafluoroborates, triflates, and tosylates as counter anions are frequently used due to their good solubility in general organic solvents, as well as the lack of nucleophilicity of these anions, compared with halide anion salts.
This is a preview of subscription content, log in to check access.

References

  1. 1.
    BASULI, F., WU, H. & GRIFFITHS, G. L. 2011. Syntheses of meta-[18F]fluorobenzaldehyde and meta-[18F]fluorobenzyl bromide from phenyl(3-formylphenyl)iodonium salt precursors. J. Labelled Compd. Radiopharm., 54, 224–228.CrossRefGoogle Scholar
  2. 2.
    BIELAWSKI, M., AILI, D. & OLOFSSON, B. 2008. Regiospecific One-Pot Synthesis of Diaryliodonium Tetrafluoroborates from Arylboronic Acids and Aryl Iodides. J. Org. Chem., 73, 4602–4607.CrossRefGoogle Scholar
  3. 3.
    BIELAWSKI, M., MALMGREN, J., PARDO, L. M., WIKMARK, Y. & OLOFSSON, B. 2014. One-Pot Synthesis and Applications of N-Heteroaryl Iodonium Salts. ChemistryOpen, 3, 19–22.CrossRefGoogle Scholar
  4. 4.
    CAMPBELL, M. G. & RITTER, T. 2015. Modern Carbon-Fluorine Bond Forming Reactions for Aryl Fluoride Synthesis. Chem. Rev. (Washington, DC, U. S.), 115, 612–633.CrossRefGoogle Scholar
  5. 5.
    CARRERAS, V., SANDTORV, A. H. & STUART, D. R. 2017. Synthesis of Aryl(2,4,6-trimethoxyphenyl)iodonium Trifluoroacetate Salts. J. Org. Chem., 82, 1279–1284.CrossRefGoogle Scholar
  6. 6.
    CARROLL, M. A., NAIRNE, J., SMITH, G. & WIDDOWSON, D. A. 2007a. Radical scavengers: A practical solution to the reproducibility issue in the fluoridation of diaryliodonium salts. J. Fluorine Chem., 128, 127–132.CrossRefGoogle Scholar
  7. 7.
    CARROLL, M. A., NAIRNE, J. & WOODCRAFT, J. L. 2007b. Diaryliodonium salts: a solution to 3-[18F]fluoropyridine. J. Labelled Compd. Radiopharm., 50, 452–454.CrossRefGoogle Scholar
  8. 8.
    CHUN, J.-H., LU, S., LEE, Y.-S. & PIKE, V. W. 2010. Fast and High-Yield Microreactor Syntheses of ortho-Substituted [18F]Fluoroarenes from Reactions of [18F]Fluoride Ion with Diaryliodonium Salts. J. Org. Chem., 75, 3332–3338.CrossRefGoogle Scholar
  9. 9.
    CHUN, J.-H., LU, S. & PIKE, V. W. 2011. Rapid and Efficient Radiosyntheses of meta-Substituted [18F]Fluoroarenes from [18F]Fluoride Ion and Diaryliodonium Tosylates within a Microreactor. Eur. J. Org. Chem., 2011, 4439–4447, S4439/1-S4439/67.Google Scholar
  10. 10.
    CHUN, J.-H. & PIKE, V. W. 2012. Single-Step Radiosynthesis of “18F-Labeled Click Synthons” from Azide-Functionalized Diaryliodonium Salts. Eur. J. Org. Chem., 2012, 4541–4547, S4541/1-S4541/18.Google Scholar
  11. 11.
    CHUN, J.-H. & PIKE, V. W. 2013. Single-step syntheses of no-carrier-added functionalized [18F]fluoroarenes as labeling synthons from diaryliodonium salts. Org. Biomol. Chem., 11, 6300–6306.CrossRefGoogle Scholar
  12. 12.
    EDWARDS, R., WESTWELL, A. D., DANIELS, S. & WIRTH, T. 2015. Convenient Synthesis of Diaryliodonium Salts for the Production of [18F]F-DOPA. Eur. J. Org. Chem., 2015, 625–630.Google Scholar
  13. 13.
    ERMERT, J., HOCKE, C., LUDWIG, T., GAIL, R. & COENEN, H. H. 2004. Comparison of pathways to the versatile synthon of no-carrier-added 1-bromo-4-[18F]fluorobenzene. J. Labelled Compd. Radiopharm., 47, 429–441.CrossRefGoogle Scholar
  14. 14.
    HARTMANN, C. & MEYER, V. 1894. On a new class of iodine, nitrogen-free organic bases. Chem. Zentralbl., 65 Book 1, 550–551.Google Scholar
  15. 15.
    HELFER, A., CASTILLO MELEAN, J., ERMERT, J., INFANTINO, A. & COENEN, H. H. 2013. Bis(4-benzyloxyphenyl)iodonium salts as effective precursors for the no-carrier-added radiosynthesis of 4-[18F]fluorophenol. Appl. Radiat. Isot., 82, 264–267.CrossRefGoogle Scholar
  16. 16.
    HOSSAIN, M. D., IKEGAMI, Y. & KITAMURA, T. 2006. Reaction of arenes with iodine in the presence of potassium peroxodisulfate in trifluoroacetic acid. Direct and simple synthesis of diaryliodonium triflates. J. Org. Chem., 71, 9903–9905.CrossRefGoogle Scholar
  17. 17.
    ICHIISHI, N., BROOKS, A. F., TOPCZEWSKI, J. J., RODNICK, M. E., SANFORD, M. S. & SCOTT, P. J. H. 2014. Copper-Catalyzed [18F]Fluorination of (Mesityl)(aryl)iodonium Salts. Org. Lett., 16, 3224–3227.CrossRefGoogle Scholar
  18. 18.
    ICHIISHI, N., CANTY, A. J., YATES, B. F. & SANFORD, M. S. 2013. Cu-Catalyzed Fluorination of Diaryliodonium Salts with KF. Org. Lett., 15, 5134–5137.CrossRefGoogle Scholar
  19. 19.
    JANG, K. S., JUNG, Y.-W., GU, G., KOEPPE, R. A., SHERMAN, P. S., QUESADA, C. A. & RAFFEL, D. M. 2013. 4-[18F]Fluoro-m-hydroxyphenethylguanidine: A Radiopharmaceutical for Quantifying Regional Cardiac Sympathetic Nerve Density with Positron Emission Tomography. J. Med. Chem., 56, 7312–7323.CrossRefGoogle Scholar
  20. 20.
    KIM, J., MOON, B. S., LEE, B. C., LEE, H.-Y., KIM, H.-J., CHOO, H., PAE, A. N., CHO, Y. S. & MIN, S.-J. 2017. A Potential PET Radiotracer for the 5-HT2C Receptor: Synthesis and in Vivo Evaluation of 4-(3-[18F]fluorophenethoxy)pyrimidine. ACS Chem. Neurosci., Ahead of Print.Google Scholar
  21. 21.
    KUIK, W.-J., KEMA, I. P., BROUWERS, A. H., ZIJLMA, R., NEUMANN, K. D., DIERCKX, R. A. J. O., DI MAGNO, S. G. & ELSINGA, P. H. 2015. In vivo biodistribution of no-carrier-added 18FDOPA, produced by a new nucleophilic substitution approach, compared with carrier-added 18FDOPA, prepared by conventional electrophilic substitution. J. Nucl. Med., 56, 106–112.CrossRefGoogle Scholar
  22. 22.
    LANCER, K. M. & WIEGAND, G. H. 1976. The ortho effect in the pyrolysis of iodonium halides. A case for a sterically controlled nucleophilic aromatic (SN) substitution reaction. J. Org. Chem., 41, 3360–4.CrossRefGoogle Scholar
  23. 23.
    LIBERT, L. C., FRANCI, X., PLENEVAUX, A. R., OOI, T., MARUOKA, K., LUXEN, A. J. & LEMAIRE, C. F. 2013. Production at the Curie level of no-carrier-added 6-18F-fluoro-L-dopa. J. Nucl. Med., 54, 1154–1161.CrossRefGoogle Scholar
  24. 24.
    LINSTAD, E. J., VAVERE, A. L., HU, B., KEMPINGER, J. J., SNYDER, S. E. & DIMAGNO, S. G. 2017. Thermolysis and radiofluorination of diaryliodonium salts derived from anilines. Org. Biomol. Chem., 15, 2246–2252.CrossRefGoogle Scholar
  25. 25.
    MERRITT, E. A. & OLOFSSON, B. 2009. Diaryliodonium Salts: A Journey from Obscurity to Fame. Angew. Chem., Int. Ed., 48, 9052–9070.CrossRefGoogle Scholar
  26. 26.
    MILLER, P. W., LONG, N. J., VILAR, R. & GEE, A. D. 2008. Synthesis of 11C, 18F, 15O, and 13N radiolabels for positron emission tomography. Angew. Chem., Int. Ed., 47, 8998–9033.CrossRefGoogle Scholar
  27. 27.
    MOON, B. S., KIL, H. S., PARK, J. H., KIM, J. S., PARK, J., CHI, D. Y., LEE, B. C. & KIM, S. E. 2011. Facile aromatic radiofluorination of [18F]flumazenil from diaryliodonium salts with evaluation of their stability and selectivity. Org. Biomol. Chem., 9, 8346–8355.CrossRefGoogle Scholar
  28. 28.
    MU, L., MULLER HERDE, A., RUEFLI, P. M., SLADOJEVICH, F., MILICEVIC SEPHTON, S., KRAMER, S. D., THOMPSON, A. J., SCHIBLI, R., AMETAMEY, S. M. & LOCHNER, M. 2016. Synthesis and Pharmacological Evaluation of [11C]Granisetron and [18F]Fluoropalonosetron as PET Probes for 5-HT3 Receptor Imaging. ACS Chem. Neurosci., 7, 1552–1564.CrossRefGoogle Scholar
  29. 29.
    NEUMANN, K. D., QIN, L., VAVERE, A. L., SHEN, B., MIAO, Z., CHIN, F. T., SHULKIN, B. L., SNYDER, S. E. & DI MAGNO, S. G. 2016. Efficient automated syntheses of high specific activity 6-[18F]fluorodopamine using a diaryliodonium salt precursor. J. Labelled Compd. Radiopharm., 59, 30–34.CrossRefGoogle Scholar
  30. 30.
    PIKE, V. W. & AIGBIRHIO, F. I. 1995. Reactions of cyclotron-produced [18F]fluoride with diaryliodonium salts - a novel single-step route to no-carrier-added [18]fluoroarenes. J. Chem. Soc., Chem. Commun., 2215–6.Google Scholar
  31. 31.
    PRESHLOCK, S., TREDWELL, M. & GOUVERNEUR, V. 2016. 18F-Labeling of Arenes and Heteroarenes for Applications in Positron Emission Tomography. Chem. Rev. (Washington, DC, U. S.), 116, 719–766.CrossRefGoogle Scholar
  32. 32.
    QIN, L., HU, B., NEUMANN, K. D., LINSTAD, E. J., MCCAULEY, K., VENESS, J., KEMPINGER, J. J. & DIMAGNO, S. G. 2015. A Mild and General One-Pot Synthesis of Densely Functionalized Diaryliodonium Salts. Eur. J. Org. Chem., 2015, 5919–5924.CrossRefGoogle Scholar
  33. 33.
    ROSS, T. L., ERMERT, J., HOCKE, C. & COENEN, H. H. 2007. Nucleophilic 18F-Fluorination of Heteroaromatic Iodonium Salts with No-Carrier-Added [18F]Fluoride. J. Am. Chem. Soc., 129, 8018–8025.CrossRefGoogle Scholar
  34. 34.
    ROTSTEIN, B. H., STEPHENSON, N. A., VASDEV, N. & LIANG, S. H. 2014. Spirocyclic hypervalent iodine(III)-mediated radiofluorination of non-activated and hindered aromatics. Nat. Commun., 5, 4365.CrossRefGoogle Scholar
  35. 35.
    SATYAMURTHY, N. & BARRIO, J. R. 2010. No-carrier-added nucleophilic [18F]-fluorination of aromatic compounds using phenyliodonium ylides. WO2010117435A2.Google Scholar
  36. 36.
    SOLDATOVA, N., POSTNIKOV, P., KUKURINA, O., ZHDANKIN, V. V., YOSHIMURA, A., WIRTH, T. & YUSUBOV, M. S. 2017. Facile One-Pot Synthesis of Diaryliodonium Salts from Arenes and Aryl Iodides with Oxone. ChemistryOpen, 6, 18–20.CrossRefGoogle Scholar
  37. 37.
    TELU, S., CHUN, J.-H., SIMEON, F. G., LU, S. & PIKE, V. W. 2011. Syntheses of mGluR5 PET radioligands through the radiofluorination of diaryliodonium tosylates. Org. Biomol. Chem., 9, 6629–6638.CrossRefGoogle Scholar
  38. 38.
    TREDWELL, M. & GOUVERNEUR, V. 2012. 18F Labeling of Arenes. Angew. Chem., Int. Ed., 51, 11426–11437.CrossRefGoogle Scholar
  39. 39.
    VAN DER PUY, M. 1982. Conversion of diaryliodonium salts to aryl fluorides. J. Fluorine Chem., 21, 385–92.CrossRefGoogle Scholar
  40. 40.
    WANG, B., QIN, L., NEUMANN, K. D., UPPALURI, S., CERNY, R. L. & DI MAGNO, S. G. 2010. Improved Arene Fluorination Methodology for I(III) Salts. Org. Lett., 12, 3352–3355.CrossRefGoogle Scholar
  41. 41.
    WARNIER, C., LEMAIRE, C., BECKER, G., ZARAGOZA, G., GIACOMELLI, F., AERTS, J., OTABASHI, M., BAHRI, M. A., MERCIER, J., PLENEVAUX, A. & LUXEN, A. 2016. Enabling Efficient Positron Emission Tomography (PET) Imaging of Synaptic Vesicle Glycoprotein 2A (SV2A) with a Robust and One-Step Radiosynthesis of a Highly Potent 18F-Labeled Ligand ([18F]UCB-H). J. Med. Chem., 59, 8955–8966.CrossRefGoogle Scholar
  42. 42.
    WUEST, F. R., HOEHNE, A. & METZ, P. 2005. Synthesis of 18F-labeled cyclooxygenase-2 (COX-2) inhibitors via Stille reaction with 4-[18F]fluoroiodobenzene as radiotracers for positron emission tomography (PET). Org. Biomol. Chem., 3, 503–507.CrossRefGoogle Scholar
  43. 43.
    WUEST, F. R. & KNIESS, T. 2003. Synthesis of 4-[18F]fluoroiodobenzene and its application in Sonogashira cross-coupling reactions. J. Labelled Compd. Radiopharm., 46, 699–713.CrossRefGoogle Scholar
  44. 44.
    YAMADA, Y. & OKAWARA, M. 1972. Steric effect in the nucleophilic attack of bromide anion on diaryl- and aryl-2-thienyliodonium ions. Bull. Chem. Soc. Jap., 45, 1860–3.CrossRefGoogle Scholar
  45. 45.
    YUSUBOV, M. S., MASKAEV, A. V. & ZHDANKIN, V. V. 2011. Iodonium salts in organic synthesis. ARKIVOC (Gainesville, FL, U. S.), 370–409.Google Scholar
  46. 46.
    YUSUBOV, M. S., SVITICH, D. Y., LARKINA, M. S. & ZHDANKIN, V. V. 2013. Applications of iodonium salts and iodonium ylides as precursors for nucleophilic fluorination in Positron Emission Tomography. ARKIVOC (Gainesville, FL, U. S.), 364–395, 32 pp.Google Scholar
  47. 47.
    ZHANG, M.-R., KUMATA, K. & SUZUKI, K. 2007. A practical route for synthesizing a PET ligand containing [18F]fluorobenzene using reaction of diphenyliodonium salt with [18F]F. Tetrahedron Lett., 48, 8632–8635.CrossRefGoogle Scholar
  48. 48.
    ZHDANKIN, V. V. & STANG, P. J. 2008. Chemistry of polyvalent iodine. Chem Rev, 108, 5299–358.CrossRefGoogle Scholar
  49. 49.
    ZLATOPOLSKIY, B. D., ZISCHLER, J., KRAPF, P., ZARRAD, F., URUSOVA, E. A., KORDYS, E., ENDEPOLS, H. & NEUMAIER, B. 2015. Copper-Mediated Aromatic Radiofluorination Revisited: Efficient Production of PET Tracers on a Preparative Scale. Chem. - Eur. J., 21, 5972–5979.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Citigroup of Biomedical Imaging CenterWeill Cornell MedicineNew YorkUSA
  2. 2.Department of DiscoveryAvid RadiopharmaceuticalsPhiladelphiaUSA