Skip to main content

Non-Cooperative and Cooperative Spectrum Sensing in 5G Cognitive Networks

  • Living reference work entry
  • First Online:
Handbook of Cognitive Radio

Abstract

5G is the expected next step of the mobile cellular network evolution, and it is considered as the answer to the ongoing huge increase of cellular users and services. The architecture envisioned for 5G includes a large number of different network entities and systems that share a common spectrum resource via a dynamic spectrum access (DSA) approach. This solution is expected to significantly increase the overall spectrum efficiency but also introduces the challenge of optimizing the coexistence between the entities forming the overall network, by limiting their mutual interference. Within this context, the cognitive radio (CR) paradigm, mainly focusing on its peculiar function, that is, spectrum sensing (SS), is being currently proposed as one of the main enablers for efficient DSA with limited interference. The goal of this chapter is to provide a comparative analysis on CR-inspired spectrum resource management (CR-SRM) mechanisms recently proposed for the 5G architecture, which mainly exploit SS, in order to characterize up-to-date research trends on the topic and highlight still-open challenges and possible future work directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Panwar N, Sharma S, Kumar Singh A (2016) A survey on 5G: the next generation of mobile communication. Elsevier Phys Commun 18(2):64–84

    Article  Google Scholar 

  2. Andrews JG et al (2014) What will 5G be? IEEE J Sel Areas Commun 32(6):1065–1082

    Article  MathSciNet  Google Scholar 

  3. Mitola J, Maguire GQ (1999) Cognitive radio: making software radios more personal. IEEE Pers Commun 6(4):13–18

    Article  Google Scholar 

  4. Ericsson (2016) 5G radio access – capabilities and technologies. White paper Uen 284:23–3204. Rev C

    Google Scholar 

  5. NTT DoCoMo Inc (2014) 5G radio access: requirements, concept and technologies. White paper

    Google Scholar 

  6. 5GPPP (2015) The next generation of communication networks and services, the 5G infrastructure public private partnership (5GPPP), European Commission

    Google Scholar 

  7. GSMA Intelligence (2014) Understanding 5G: perspectives on future technological advancements in mobile. White paper

    Google Scholar 

  8. METIS Project (2013) Scenarios, requirements and KPIs for 5G mobile and wireless system, Doc. ID:ICT-317669-METIS/D1.1

    Google Scholar 

  9. Qualcomm Technologies Inc (2016) Leading the world to 5G. White paper

    Google Scholar 

  10. Demestichas P et al (2013) 5G on the horizon: key challenges for the radio-access network. IEEE Veh Technol Mag 8(3):47–53

    Article  Google Scholar 

  11. Hossain E, Hasan M (2015) 5G cellular: key enabling technologies and research challenges. IEEE Instrum Meas Mag 18(3):11–21

    Article  Google Scholar 

  12. Bhushan N et al (2014) Network densification: the dominant theme for wireless evolution into 5G. IEEE Commun Mag 52(2):82–89

    Article  Google Scholar 

  13. Larsson EG, Edfors O, Tufvesson F, Marzetta TL (2014) Massive MIMO for next generation wireless systems. IEEE Commun Mag 52(2):186–195

    Article  Google Scholar 

  14. Ngo HQ (2015) Massive MIMO: fundamentals and system designs. PhD thesis, Linkoping University Electronic Press

    Google Scholar 

  15. Rappaport TS et al (2013) Millimiter wave mobile communications for 5G cellular: it will work! IEEE Access 1:335–349

    Article  Google Scholar 

  16. Hong S et al (2014) Applications of self-interference cancellation in 5G and beyond. IEEE Commun Mag 52(2):114–121

    Article  Google Scholar 

  17. Xiao L, Wang P, Niyato D, Kim D, Han Z (2014) Wireless networks with RF energy harvesting: a contemporary survey. IEEE Commun Surv Tutorials 17(2):757–789

    Google Scholar 

  18. Checko A et al (2015) Cloud RAN for mobile networks – a technology overview. IEEE Commun Surv Tutorials 17(1):405–426

    Article  Google Scholar 

  19. Liang C, Yu F (2015) Wireless network virtualization: a survey, some research issues and challenges. IEEE Commun Surv Tutorials 17(1):358–380

    Article  Google Scholar 

  20. Andrews JG, Claussen H, Dohler M, Rangan S, Reed MC (2012) Femtocells: past, present, and future. IEEE J Sel Areas Commun 30(3):497–508

    Article  Google Scholar 

  21. ElSawy H, Hossain E, Kim DI (2013) HetNets with cognitive small cells: user offloading and distributed channel access techniques. IEEE Commun Mag 51(6):28–36

    Article  Google Scholar 

  22. Hossain E, Rasti M, Tabassum H, Abdelnasser A (2014) Evolution toward 5G multi-tier cellular wireless networks: an interference management perspective. IEEE Wirel Commun 21(3):118–127

    Article  Google Scholar 

  23. Wang W, Yu G, Huang A (2013) Cognitive radio enhanced interference coordination for femtocell networks. IEEE Commun Mag 51(6):37–43

    Article  Google Scholar 

  24. Sharma SK, Patwary M, Chatzinotas S, Ottersten B, Abdel-Maguid M (2015) Repeater for 5G wireless: a complementary contender for spectrum sensing intelligence. In: Proceedings of the IEEE International Conference on Communications. IEEE Press, pp 1416–1421

    Google Scholar 

  25. Hong X, Wang J, Wang CX, Shi J (2014) Cognitive radio in 5G: a perspective on energy-spectral efficiency trade-off. IEEE Commun Mag 52(7):46–53

    Article  Google Scholar 

  26. Huang L, Zhu G, Du X (2013) Cognitive femtocell networks: an opportunistic spectrum access for future indoor wireless coverage. IEEE Wirel Commun 20(2):44–51

    Article  Google Scholar 

  27. Galinina O et al (2014) Capturing spatial randomness of heterogeneous cellular/WLAN deployments with dynamic traffic. IEEE J Sel Areas Commun 32(6):1083–1099

    Article  Google Scholar 

  28. Lien S-Y, Chen K-C, Liang Y-C, Lin Y (2014) Cognitive radio resource management for future cellular networks. IEEE Wirel Commun 21(1):70–79

    Article  Google Scholar 

  29. FCC Spectrum Policy Task Force (2002) Report of the spectrum efficiency working group. Technical report 02–155

    Google Scholar 

  30. Staple G, Werbach K (2004) The end of spectrum scarcity. IEEE Spectr 41(3):48–52

    Article  Google Scholar 

  31. Zhao Q, Swami A (2007) A survey of dynamic spectrum access: signal processing and networking perspectives. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE Press, pp IV-1349–IV-1352

    Google Scholar 

  32. Hatfield DN, Weiser PJ (2005) Property rights in spectrum: taking the next step. In: Proceedings of the IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks. IEEE Press, pp 43–55

    Google Scholar 

  33. Akyildiz IF, Altunbasak Y, Fekri F, Sivakumar R (2004) AdaptNet: adaptive protocol suite for next generation wireless internet. IEEE Commun Mag 42(3):128–138

    Article  Google Scholar 

  34. Akyildiz IF, Lee W-Y, Vuran MC, Mohanty S (2006) Next generation/dynamic spectrum access/cognitive radio wireless networks: a survey. Elsevier Comput Netw 50:2127–2159

    Article  MATH  Google Scholar 

  35. Etkin R, Parekh A, Tse D (2007) Spectrum sharing for unlicensed bands. IEEE J Sel Areas Commun 25(3):517–528

    Article  Google Scholar 

  36. Di Benedetto M-G, Cattoni AF, Fiorina J, Bader F, De Nardis L (eds) (2015) Cognitive radio and networking for heterogeneous wireless networks. Springer, Cham

    Google Scholar 

  37. Yucek T, Arslan H (2009) A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun Surv Tutorials 11(1):116–130

    Article  Google Scholar 

  38. Ali A, Hamouda W (2016) Advances on spectrum sensing for cognitive radio networks: theory and applications. IEEE Commun Surv Tutorials PP(99):1

    Google Scholar 

  39. Caso G, De Nardis L, Thobaben R, Di Benedetto M-G (2015) Cooperative sensing of spectrum opportunities. In: Holland O, Bogucka H, Medeisis A (eds) Opportunistic spectrum sharing and white space access: the practical reality. John Wiley & Sons, Hoboken, New Jersey, pp 143–165

    Chapter  Google Scholar 

  40. Axell A, Leus G, Larsson E, Poor HV (2012) Spectrum sensing for cognitive radio: state-of-the-art and recent advances. IEEE Signal Process Mag 29(3):101–116

    Article  Google Scholar 

  41. ElSawy H, Hossain E (2013) Channel assignment and opportunistic spectrum access in two-tier cellular networks with cognitive small cells. In: Proceedings of the IEEE Global Communications Conference. IEEE Press, pp 4477–4482

    Google Scholar 

  42. Pantisano F, Bennis M, Saad W, Debbah M, Latva-Aho M (2013) interference alignment for cooperative femtocell networks: a game-theoretic approach. IEEE Trans Mob Comput 12(11):2233–2246

    Article  Google Scholar 

  43. Zhuang B, Guo D, Honig ML (2015) Traffic-driven spectrum allocation in heterogeneous networks. IEEE J Sel Areas Commun 33(10):2027–2038

    Article  Google Scholar 

  44. Qiu J et al (2016) Hierarchical resource allocation framework for hyper-dense small cell networks. IEEE Access 4:8657–8669

    Article  Google Scholar 

  45. Qiao X, Xie W, Yang F (2015) Cooperative sequential sensing of radio transmissions in 5G with improved cost-delay tradeoff. Hindawi Int J Distrib Sens Netw 2015:1–12. ID:456074

    Google Scholar 

  46. Zhang Z, Zhang W, Zeadally S, Wang Y, Liu Y (2015) Cognitive radio spectrum sensing framework based on multi-agent architecture for 5G networks. IEEE Wirel Commun 22(6):34–39

    Article  Google Scholar 

  47. Thilina KGM, Hossain E, Kim DI (2016) DCCC-MAC: a dynamic common-control-channel-based MAC protocol for cellular cognitive radio networks. IEEE Trans Veh Technol 65(5):3597–3613

    Article  Google Scholar 

  48. Sardellitti S, Barbarossa S (2013) Joint optimization of collaborative sensing and radio resource allocation in small-cell networks. IEEE Trans Signal Process 61(18):4506–4520

    Article  MathSciNet  Google Scholar 

  49. Li B, Li S, Nallanathan A, Zhao C (2015) Deep sensing for future spectrum and location awareness 5G communications. IEEE J Sel Areas Commun 33(7):1331–1344

    Article  Google Scholar 

  50. Zhang H, Jiang C, Mao X, Chen HH (2016) Interference-limited resource optimization in cognitive femtocells with fairness and imperfect spectrum sensing. IEEE Trans Veh Technol 65(3):1761–1771

    Article  Google Scholar 

  51. Zhang H, Nie Y, Cheng J, Leung VCM, Arumugam N (2016) Sensing time optimization and power control for energy efficient cognitive small cell with imperfect hybrid spectrum sensing. IEEE Trans Wirel Commun PP(99):1

    Google Scholar 

  52. Akhtar AM, Wang X, Hanzo L (2016) Synergistic spectrum sharing in 5G HetNets: a harmonized SDN-enabled approach. IEEE Commun Mag 54(1):40–47

    Article  Google Scholar 

  53. Jiang C, Zhang H, Ren Y, Chen HH (2014) Energy-efficient non-cooperative cognitive radio networks: micro, meso, and macro views. IEEE Commun Mag 52(7):14–20

    Article  Google Scholar 

  54. Liu Y, Zhang Y, Yu R, Xie S (2015) Integrated energy and spectrum harvesting for 5G wireless communications. IEEE Netw 29(3):75–81

    Article  Google Scholar 

  55. Huawei et al (2013) Discussion paper on unlicensed spectrum integration to IMT systems, 3GPP RAN 62 RP-131723

    Google Scholar 

  56. Hur S et al (2013) Millimeter wave beamforming for wireless backhaul and access in small cell networks. IEEE Trans Commun 61(10):4391–4403

    Article  Google Scholar 

  57. Bennis M et al (2013) When cellular meets WiFi in wireless small cell networks. IEEE Commun Mag 51(6):44–50

    Article  Google Scholar 

  58. Hajmohammad S, Elbiaze H (2013) Unlicensed spectrum splitting between femtocell and WiFi. In: Proceedings of the IEEE International Conference on Communications. IEEE Press, pp 1883–1888

    Google Scholar 

  59. Almeida E et al (2013) Enabling LTE/WiFi coexistence by LTE blank subframe allocation. In: Proceedings of the IEEE International Conference on Communications. IEEE Press, pp 5083–5088

    Google Scholar 

  60. Zhang H, Chu X, Guo W, Wang S (2015) Coexistence of WiFi and heterogeneous small cell networks sharing unlicensed spectrum. IEEE Commun Mag 53(3):158–164

    Article  Google Scholar 

  61. Hosseini H, Anpalagan A, Raahemifar K, Erkucuk S, Habib S (2016) Joint wavelet-based spectrum sensing and FBMC modulation for cognitive mmWave small cell networks. IET Commun 10(14):1803–1809

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Caso .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry

Caso, G., Le, M.T.P., De Nardis, L., Di Benedetto, MG. (2017). Non-Cooperative and Cooperative Spectrum Sensing in 5G Cognitive Networks. In: Zhang, W. (eds) Handbook of Cognitive Radio . Springer, Singapore. https://doi.org/10.1007/978-981-10-1389-8_7-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1389-8_7-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1389-8

  • Online ISBN: 978-981-10-1389-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics