Skip to main content

Distributed Resource Allocation for Network Virtualization

  • Living reference work entry
  • First Online:
Handbook of Cognitive Radio
  • 142 Accesses

Abstract

The explosive development of mobile data service makes our lives convenient and efficient. However, due to the limitation of resources and high flexibility of users’ requirements, the resource management and allocation remain challenging. In this chapter, we first overview the development of mobile network. Based on the increasingly complicated mobile network, we analyze the current trends for service architecture, and show the features of distributive control and network virtualization in the future data services. According to the service architecture, game theory is adopted to discuss the distributed behaviors of each service provider and user. We model the resource allocation problem as a hierarchical game, where the strategies for each service provider and each mobile user is proposed to achieve optimal and stable utilities. Finally, we conclude the chapter and put forwards future directions for distributed resource allocation problem in the virtualized data service network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Cisco (2017) Cisco visual networking index: global mobile data traffic forecast update, 2016–2021. Cisco White paper, ID:1454457600805266. Available via DIALOG http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html

  2. Yi S, Li C, Li Q (2015) A survey of fog computing: concepts, applications and issues. In: Proceedings of the 2015 Workshop on Mobile Big Data, Hangzhou, pp 37–42

    Google Scholar 

  3. Mitola J, Maguire GQ (1999) Cognitive radio: making software radios more personal. IEEE Pers Commun 6(4):13–18

    Article  Google Scholar 

  4. Liang YC, Chen KC, Li GY, Mahonen P (2011) Cognitive radio networking and communications: an overview. IEEE Trans Veh Technol 60(7):3386–3407

    Article  Google Scholar 

  5. Stevenson CR, Chouinard G, Lei Z, Hu W, Shellhammer SJ, Caldwell W (2009) IEEE 802.22: the first cognitive radio wireless regional area network standard. IEEE Commun Mag 47(1):130–138

    Article  Google Scholar 

  6. AT&T (2009) AT&T Wi-Fi: at a glance. Available via DIALOG https://www.att.com/Common/about_us/files/pdf/wifi/Wi-Fi_at_a_Glance.pdf

  7. Tao M, Chen E, Zhou H, Yu W (2016) Content-centric sparse multicast beamforming for cache-enabled cloud RAN. IEEE Trans Wirel Commun 15(9):6118–6131

    Article  Google Scholar 

  8. Liu H, Chen Z, Tian X, Wang X, Tao M (2014) On content-centric wireless delivery networks. IEEE Wirel Commun 21(6):118–125

    Article  Google Scholar 

  9. Golrezaei N, Molisch AF, Dimakis AG, Caire G (2013) Femtocaching and device-to-device collaboration: a new architecture for wireless video distribution. IEEE Commun Mag 51(4):142–149

    Article  Google Scholar 

  10. Zhang L, Jiang T, Luo K (2016) Dynamic spectrum allocation for the downlink of OFDMA-based hybrid-access cognitive femtocell networks. IEEE Trans Veh Technol 65(3):1772–1781

    Article  Google Scholar 

  11. Zhang H, Niyato D, Song L, Jiang T, Han Z (2016) Zero-determinant strategy for resource sharing in wireless cooperations. IEEE Trans Wirel Commun 15(3):2179–2192

    Article  Google Scholar 

  12. Zhang H, Ding W, Song J, Han Z (2016) A hierarchical game approach for visible light communication and multi-hop D2D heterogeneous network. In: 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC

    Google Scholar 

  13. Han Z, Niyato D, Saad W, Basar T, Hjorungnes A (2011) Game theory in wireless and communication networks: theory, models and applications. Cambridge University Press, Cambridge/New York

    Book  MATH  Google Scholar 

  14. El-Atta AHA, Moussa MI (2009) Student project allocation with preference lists over (student, project) Pairs. In: Second International Conference on Computer and Electrical Engineering, Dubai

    Book  Google Scholar 

  15. Gu Y, Chang Z, Pan M, Song L, Han Z (2017, preprint) Joint radio and computational resource allocation in IoT fog computing: a student project allocation matching. arXiv:1777723

    Google Scholar 

  16. Abraham DJ, Irving RW, Manlove DF (2003) The student-project allocation problem. In: 14th International Symposium, ISAAC, Kyoto, pp 474–484

    Google Scholar 

  17. Zhang Y, Han Z (2017) “Multi-dimensional Payment Plan in Fog Computing with Moral Hazard”, book chapter of Contract Theory for Wireless Networks. Springer International Publishing, pp. 73–88.

    Google Scholar 

  18. Zhang H, Xiao Y, Bu S, Niyato D, Yu R, Han Z (2016) Fog computing in multi-tier data center networks: a hierarchical game approach. In: IEEE International Conference on Communications(ICC), Kuala Lumpur

    Google Scholar 

  19. Zhang H, Xiao Y, Bu S, Niyato D, Yu R, Han Z (2017) Computing Resource Allocation in Three-Tier IoT Fog Networks: a Joint Optimization Approach Combining Stackelberg Game and Matching. In: IEEE Internet of Things Journal PP(99):1–1.

    Google Scholar 

  20. Zhang H, Xiao Y, Cai LX, Niyato D, Song L, Han Z (2015) Hieratical competition for LTE unlicensed using stackelberg game and bargaining. In: IEEE Global Communications Conference, San Diego

    Google Scholar 

  21. Saad W, Han Z, Zheng R, Debbah M, Poor HV (2014) A college admissions game for uplink user association in wireless small cell networks. In: IEEE Conference on Computer Communications, Toronto, pp 1096–1104

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaqing Zhang .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry

Zhang, H., Han, Z. (2017). Distributed Resource Allocation for Network Virtualization. In: Zhang, W. (eds) Handbook of Cognitive Radio . Springer, Singapore. https://doi.org/10.1007/978-981-10-1389-8_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1389-8_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1389-8

  • Online ISBN: 978-981-10-1389-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics