Skip to main content

Waveform Designs for Cognitive Radio and Dynamic Spectrum Access Applications

  • Living reference work entry
  • First Online:
Handbook of Cognitive Radio

Abstract

Cognitive radio and dynamic spectrum access systems are effective ways of using radio spectrum which is a scarce source. Cognitive radio applications changed the paradigm for the wireless communications systems in the past decades. Besides that, different communications systems and wireless communications channels require different waveform designs and radio access technologies. In this study, a general design and evaluation procedure for the new waveform techniques are presented based on cognitive radio and dynamic spectrum access requirements. Radio access technology researches for the future-generation cellular systems and cognitive radio systems intersect to each other. Therefore, some of the future waveform designs and related modifications are analyzed under the cognitive radio perspective. Several waveforms which have various trade-off situations are discussed from a general perspective and an adaptivity/flexibility perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Mahmoud HA, Yucek T, Arslan H (2009) OFDM for cognitive radio: merits and challenges. IEEE Wirel Commun 16(2):6–15

    Article  Google Scholar 

  2. Yazar A, Onat FA, Arslan H (2016) New generation waveform approaches for 5G and beyond. In: IEEE Signal Processing and Communications Applications Conference (SIU), pp 961–964

    Google Scholar 

  3. I C-L, Han S, Xu Z, Wang S, Sun Q, Chen Y (2016) New paradigm of 5G wireless internet. IEEE J Sel Areas Commun 34(3):474–482

    Article  Google Scholar 

  4. Elkourdi M, Pekoz B, Guvenkaya E, Arslan H (2016) Waveform design principles for 5G and beyond. In: IEEE Wireless and Microwave Technology Conference (WAMICON), pp 1–6

    Google Scholar 

  5. Arslan H, Yucek T (2006) Adaptation of wireless mobile multi-carrier systems. In: Li W, Xiao Y (eds) Adaptation techniques in wireless multimedia networks, 1st edn. Nova Science Publishers, New York, pp 215–240

    Google Scholar 

  6. Keller T, Hanzo L (2000) Adaptive modulation techniques for duplex OFDM transmission. IEEE Trans Veh Technol 49(5):1893–1906

    Article  Google Scholar 

  7. Harvatin DT, Ziemer RE (1997) Orthogonal frequency division multiplexing performance in delay and doppler spread channels. In: IEEE Vehicular Technology Conference (VTC), vol 3, pp 1644–1647

    Google Scholar 

  8. Weiss T, Krohn A, Capar F, Martoyo I, Jondral FK (2003) Synchronization algorithms and preamble concepts for spectrum pooling systems. In: IST Mobile & Wireless Telecommunications Summit, pp 788–792

    Google Scholar 

  9. Sahin A, Arslan H (2011) Edge windowing for OFDM based systems. IEEE Commun Lett 15(11):1208–1211

    Article  Google Scholar 

  10. Bala E, Li J, Yang R (2013) Shaping specktral leakage: a novel low-complexity transceiver architecture for cognitive radio. IEEE Veh Technol Mag 8(3):38–46

    Article  Google Scholar 

  11. Guvenkaya E, Sahin A, Bala E, Yang R, Arslan H (2015) A windowing technique for optimal time-frequency concentration and ACI rejection in OFDM-based systems. IEEE Trans Commun 63(12):4977–4989

    Article  Google Scholar 

  12. Mahmoud HA, Arslan H (2008) Sidelobe Suppression in OFDM-based spectrum sharing systems using adaptive symbol transition. IEEE Commun Lett 12(2):133–135

    Article  Google Scholar 

  13. Yamaguchi H (2004) Active interference cancellation technique for MB-OFDM cognitive radio. In: IEEE European Microwave Conference, pp 1105–1108

    Google Scholar 

  14. Brandes S, Cosovic I, Schnell M (2006) Reduction of out-of-band radiation in OFDM systems by insertion of cancellation carriers. IEEE Commun Lett 10(6):420–422

    Article  Google Scholar 

  15. Cosovic I, Brandes S, Schnell M (2006) Subcarrier weighting: a method for sidelobe suppression in OFDM systems. IEEE Commun Lett 10(6):444–446

    Article  Google Scholar 

  16. Li D, Dai X, Zhang H (2009) Sidelobe suppression in NC-OFDM systems using constellation adjustment. IEEE Commun Lett 13(5):327–329

    Article  Google Scholar 

  17. Joshi DR, Popescu DC, Dobre OA, Baddour KE (2011) Spectral shaping for adjacent band interference suppression in cognitive radio systems. In: IEEE Global Telecommunications Conference (GLOBECOM), pp 1–5

    Google Scholar 

  18. Tom A, Sahin A, Arslan H (2013) Mask compliant precoder for OFDM spectrum shaping. IEEE Commun Lett 17(3):447–450

    Article  Google Scholar 

  19. Beek J, Berggren F (2009) N-continuous OFDM. IEEE Commun Lett 13(1):1–3

    Article  Google Scholar 

  20. Beek J (2009) Sculpting the multicarrier spectrum: a novel projection precoder. IEEE Commun Lett 13(12):881–883

    Article  Google Scholar 

  21. Beek J (2010) Orthogonal multiplexing in a subspace of frequency well-localized signals. IEEE Commun Lett 14(10):882–884

    Article  Google Scholar 

  22. Guvenkaya E, Sahin E, Arslan H (2015) N-coninuous OFDM with CP alignment. In: IEEE Military Communications Conference (MILCOM), pp 587–592

    Google Scholar 

  23. Zhang JA, Huang X, Cantoni A, Guo YJ (2012) Sidelobe suppression with orthogonal projection for multicarrier systems. IEEE Trans Commun 60(2):589–599

    Article  Google Scholar 

  24. Cosovic I, Mazzon T (2006) Suppression of sidelobes in OFDM systems by multiple-choice sequence. Eur Trans Telecommun 17:623–630

    Article  Google Scholar 

  25. Tom A, Sahin A, Arslan H (2016) Suppressing alignment: joint PAPR and out-of-band power leakage reduction for OFDM-based systems. IEEE Trans Commun 64(3):1100–1109

    Article  Google Scholar 

  26. Ni C, Jiang T, Peng W (2015) Joint PAPR reduction and sidelobe suppression using signal cancellation in NC-OFDM-based cognitive radio systems. IEEE Trans Veh Technol 64(3):964–972

    Article  Google Scholar 

  27. Sahin A, Guvenc I, Arslan H (2014) A survey on multicarrier communications: prototype filters, lattice structures, and implementation aspects. IEEE Commun Surv Tutorials 16(3):1312–1338

    Article  Google Scholar 

  28. Zhang X, Jia M, Chen L, Ma J, Qiu J (2015) Filtered-OFDM – enabler for flexible waveform in the 5th generation cellular networks. In: IEEE Global Telecommunications Conference (GLOBECOM), pp 1–6

    Google Scholar 

  29. Vakilian V, Wild T, Schaich F, Brink ST, Frigon JF (2013) Universal-filtered multi-carrier technique for wireless systems beyond LTE. In: IEEE Global Telecommunications Conference (GLOBECOM), pp 223–228

    Google Scholar 

  30. Huemer M, Hofbauer C, Huber JB (2012) Non-systematic complex number RS coded OFDM by unique word prefix. IEEE Trans Signal Process 60(1):285–299

    Article  MathSciNet  Google Scholar 

  31. Bellanger M (2010) FBMC physical layer: a primer. In: Physical Layer for Dynamic Spectrum Access and Cognitive Radio (PHYDYAS)

    Google Scholar 

  32. Farhang-Boroujeny B (2011) OFDM versus filter bank multicarrier. IEEE Signal Process Mag 28(3):92–112

    Article  Google Scholar 

  33. Fettweis G, Krondorf M, Bittner S (2009) GFDM – generalized frequency division multiplexing. In: IEEE VTC-Spring, pp 1–4

    Google Scholar 

  34. Berardinelli G, Tavares FML, Sorensen TB, Mogensen P, Pajukoski K (2013) Zero-tail DFT-spread-OFDM signals. In: IEEE Global Telecommunications Conference (GLOBECOM), pp 229–234

    Google Scholar 

  35. Benvenuto N, Tomasin S, Tomba L (2002) Equalization methods in OFDM and FMT systems for broadband wireless communications. IEEE Trans Commun 50(9):1413–1418

    Article  Google Scholar 

  36. Berardinelli G, Temino LR, Frattasi S, Rahman M, Mogensen P (2008) OFDMA vs. SC-FDMA: performance comparison in local area IMT-A scenarios. IEEE Wirel Commun 15(5):64–72

    Article  Google Scholar 

  37. Ankarali Z, Karabacak M, Arslan H (2014) Cyclic feature concealing CP selection for physical layer security. In: IEEE Military Communications Conference (MILCOM), pp 485–489

    Google Scholar 

  38. Guvenkaya E, Tom A, Arslan H (2013) Joint sidelobe suppression and PAPR reduction in OFDM using partial transmit sequences. In: IEEE Military Communications Conference (MILCOM), pp 95–100

    Google Scholar 

  39. Sahin A, Yang R, Ghosh M, Olesen RL (2015) An improved unique word DFT-spread OFDM scheme for 5G systems. In: IEEE Global Telecommunications Conference (GLOBECOM), pp 1–6

    Google Scholar 

  40. Sahin A, Yang R, Bala E, Beluri CM, Olesen RL (2016) Flexible DFT-S-OFDM: solutions and challenges. IEEE Commun Mag 54(11):106–112

    Article  Google Scholar 

  41. Kumar U, Ibars C, Bhorkar A, Jung H (2015) A waveform for 5G: guard interval DFT-s OFDM. In: IEEE Global Telecommunications Conference (GLOBECOM), pp 1–6

    Google Scholar 

  42. Berardinelli G, Pederson KI, Sorensen TB, Mogensen P (2016) Generalized DFT-spread-OFDM as 5G waveform. IEEE Commun Mag 54(11):99–105

    Article  Google Scholar 

  43. Devi B, Lalleima N, Singh S (2014) Comparative analysis of FBMC and OFDM multicarrier techniques for wireless communication networks. Int J Comput Appl 100(19):27–31

    Google Scholar 

  44. Farhang A, Marchetti N, Figueiredo F, Miranda J (2014) Massive MIMO and waveform design for 5th generation wireless communication systems. In: International Conference on 5G for Ubiquitous Connectivity (5GU), pp 70–75

    Google Scholar 

  45. Wong CY, Cheng RS, Lataief KB, Murch RD (1999) Multiuser OFDM with adaptive subcarrier, bit, and power allocation. IEEE J Sel Areas Commun 17(10):1747–1758

    Article  Google Scholar 

  46. Sahin A, Arslan H (2012) Multi-user aware frame structure for OFDMA based system. In: IEEE Vehicular Technology Conference (VTC Fall), pp 1–5

    Google Scholar 

  47. Falconer D, Ariyavisitakul SL, Benyamin-Seeyar A, Eidson B (2002) Frequency domain equalization for single-carrier broadband wireless systems. IEEE Commun Mag 40(4):58–66

    Article  Google Scholar 

  48. Coon J, Sandell M, Beach M, McGeehan J (2006) Channel and noise variance estimation and tracking algorithms for unique-word based single-carrier systems. IEEE Trans Wirel Commun 5(6):1488–1496

    Article  Google Scholar 

  49. Huemer M, Witschnig H, Hausner J (2003) Unique word based phase tracking algorithms for SC/FDE-systems. In: IEEE Global Telecommunications Conference (GLOBECOM), pp 70–74

    Google Scholar 

  50. Daher A, Baghious EH, Burel G, Radoi E (2010) Overlap-save and overlap-add filters: optimal design and comparison. IEEE Trans Signal Process 58(6):3066–3075

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Yazar .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry

Yazar, A., Elkourdi, M., Arslan, H. (2017). Waveform Designs for Cognitive Radio and Dynamic Spectrum Access Applications. In: Zhang, W. (eds) Handbook of Cognitive Radio . Springer, Singapore. https://doi.org/10.1007/978-981-10-1389-8_3-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1389-8_3-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1389-8

  • Online ISBN: 978-981-10-1389-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics