Skip to main content

Spectrum-Aware Mobile Computing Using Cognitive Networks

  • Living reference work entry
  • First Online:
Handbook of Cognitive Radio

Abstract

With the advent of mobile cloud computing, the expectation of the mobile users for anywhere, anytime, content-rich experience will see a significant increase. The users’ expectation on quality of experience for content-rich applications can only be met through offloading computationally intensive application tasks to a remote cloud since mobile devices are still constrained by their battery power. This, however, leads to an increase in mobile web traffic. The success of computation offloading techniques, therefore, depends on being able to effectively trade-off resource usage at the mobile device against efficiently managing the spectrum for mobile computing. Hence it is essential for cloud offloading techniques to take advantage of recent advances in cognitive networking and spectrum-aware scheduling of application components. The convergence of cognitive networking and spectrum-aware mobile computing is propelling research in this area. The current state-of-the-art includes techniques that offload application data using all viable multiple radio interfaces (e.g., WiFi, LTE, etc.) in multi-RAT-enabled devices, while being adaptive to the conditions of the mobile network. This chapter presents a survey of the existing spectrum-aware mobile computing techniques and proposes a vision for the future for a 5G-enabled, cognitive mobile computing platform. Implementation setups using real data measurements from an HTC phone running multicomponent applications and using different cloud servers such as Amazon EC2 and NSFCloud over LTE and WiFi are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Abdelnasser A, Hossain E, Dong IK (2014) Clustering and resource allocation for dense femtocells in a two-tier cellular OFDMA network. IEEE Trans Wirel Commun 13:3:1628–1644

    Article  Google Scholar 

  2. Balakrishnan P, Tham C-K (2013) Energy-efficient mapping and scheduling of task interaction graphs for code offloading in mobile cloud computing. In: IEEE/ACM 6th International Conference on Utility and Cloud Computing (UCC), pp 34–41

    Google Scholar 

  3. Barak O, Touboul A (2009) Point to point link and communication method. US Patent 7,593,729: https://www.google.com/patents/US7593729

    Google Scholar 

  4. Barbarossa S, Sardellitti S, Di Lorenzo P (2013) Computation offloading for mobile cloud computing based on wide cross-layer optimization. In: Future Network and Mobile Summit (FutureNetworkSummit), pp 1–10

    Google Scholar 

  5. Bari F, Leung VCM (2007) Automated network selection in a heterogeneous wireless network environment. IEEE Netw 21:1:34–40

    Article  Google Scholar 

  6. Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing and its role in the Internet of things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing. ACM, pp 13–16

    Google Scholar 

  7. Cai X, Chen L, Sofia R, Wu Y (2007) Dynamic and user-centric network selection in heterogeneous networks. In: IEEE International Performance, Computing, and Communications Conference (IPCCC), pp 538–544

    Google Scholar 

  8. Chen X, Wu J, Cai Y, Zhang H, Chen T (2015) Energy-efficiency oriented traffic offloading in wireless networks: a brief survey and a learning approach for heterogeneous cellular networks. IEEE J Sel Areas Commun 33:4:627–640

    Article  Google Scholar 

  9. Chun B-G, Maniatis P (2009) Augmented smartphone applications through clone cloud execution. In: Proceedings of the 12th Conference on Hot Topics in Operating Systems, Monte Verit, pp 8–8

    Google Scholar 

  10. CPLEX, IBM (2017). http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

  11. Cuervo E, Balasubramanian A, Cho D-k, Wolman A, Saroiu S, Chandra R, Bahl P (2010) MAUI: making smartphones last longer with code offload. In: International Conference on Mobile Systems, Applications, and Services, pp 49–62

    Google Scholar 

  12. Deng S, Huang L, Taheri J, Zomaya AY (2015) Computation offloading for service workflow in mobile cloud computing. In: IEEE Transactions on Parallel and Distributed Systems (early access)

    Google Scholar 

  13. Di Lorenzo P, Barbarossa S, Sardellitti S (2015) Joint optimization of radio resources and code partitioning in mobile cloud computing. IEEE Trans Mob Comput. Under second round of review, arXiv preprint arXiv:1307.383

    Google Scholar 

  14. Galvez JJ, Vaidya N (2014) Dynamic switching with heterogeneous channels in multichannel 802.11 WLANs. University of Illinois. http://www.crhc.illinois.edu/wireless/papers/galvez-ocs.pdf

  15. Gao W, Li Y, Lu H, Wang T, Liu C (2014) On exploiting dynamic execution patterns for workload offloading in mobile cloud applications. In: IEEE 22nd International Conference on Network Protocols (ICNP), pp 1–12

    Google Scholar 

  16. Georgiadis L, Neely MJ, Tassiulas L (2006) Resource allocation and cross-layer control in wireless networks. Foundations and trends in networking. Now Publishers Inc., Hanover, pp 1:1:1–144

    Google Scholar 

  17. Ghosh A, Mangalvedhe N, Ratasuk R, Mondal B, Cudak M, Visotsky E, Thomas TA, Andrews JG, Xia P, Jo HS, Dhillon HS, Novlan TD (2012) Heterogeneous cellular networks: from theory to practice. IEEE Commun Mag 50:6:54–64

    Article  Google Scholar 

  18. Hall LA, Schulz AS, Shmoys DB, Wein J (1996) Scheduling to minimize average completion time: off-line and on-line approximation algorithms. Universität Berlin. Fachbereich 3 - Mathematik, Berlin

    Google Scholar 

  19. Hou J, O’brien D (2006) Vertical handover-decision-making algorithm using fuzzy logic for the integrated radio-and-OW system. IEEE Trans Wirel Commun 5:1:176–185

    Article  Google Scholar 

  20. Huang D, Wang P, Niyato D (2012) A dynamic offloading algorithm for mobile computing. IEEE Trans Wirel Commun 11:6:1991–1995

    Article  Google Scholar 

  21. Ismail M, Gamage AT, Weihua Z, Xuemin S, Serpedin E, Qaraqe K (2015) Uplink decentralized joint bandwidth and power allocation for energy-efficient operation in a heterogeneous wireless medium. IEEE Trans Commun 63:4:1483–1495

    Article  Google Scholar 

  22. Jin A, Song W, Wang P, Niyato D, Ju P (2015) Auction mechanisms toward efficient resource sharing for cloudlets in mobile cloud computing. IEEE Trans Serv Comput 99:1–1

    Google Scholar 

  23. Johansson K, Bergman J, Gerstenberger D, Blomgren M, Wallén A (2009) Multi-carrier HSPA evolution. In: IEEE Vehicular Technology Conference, pp 1–5

    Google Scholar 

  24. Khan Z, Ahmadi H, Hossain E, Coupechoux M, DaSilva L, Lehtomaki J (2014) Carrier aggregation/channel bonding in next generation cellular networks: methods and challenges. IEEE Netw 28:6:34–40

    Article  Google Scholar 

  25. Kim Y, Ko H, Pack S, Lee W, Shen X (2013) Mobility-aware call admission control algorithm with handoff queue in mobile hotspots. IEEE Trans Veh Technol 62:8:3903–3912

    Article  Google Scholar 

  26. Kosta S, Aucinas A, Hui P, Mortier R, Zhang X (2012) ThinkAir: dynamic resource allocation and parallel execution in the cloud for mobile code offloading. In: IEEE Proceedings of INFOCOM, pp 945–953

    Google Scholar 

  27. Kovachev D, Yu T, Klamma R (2012) Adaptive computation offloading from mobile devices into the cloud. In: IEEE International Symposium on Parallel and Distributed Processing with Applications (ISPA), pp 784–791

    Google Scholar 

  28. Lee W-Y, Akyildiz IF (2012) Spectrum-aware mobility management in cognitive radio cellular networks. IEEE Trans Mob Comput 11:4:529–542

    Article  Google Scholar 

  29. Lee G, Jang I, Pack S, Shen X (2014) FW-DAS: fast wireless data access scheme in mobile networks. IEEE Trans Wirel Commun 13:8:4260:4272

    Google Scholar 

  30. Lim Y-s, Chen Y-C, Nahum EM, Towsley D, Gibbens RJ (2014) Improving energy efficiency of MPTCP for mobile devices. arXiv preprint arXiv:1406.4463

    Google Scholar 

  31. Lin Y, Chu ET, Lai Y, Huang T (2013) Time-and-energy-aware computation offloading in handheld devices to coprocessors and clouds. IEEE Syst J 9:2:393–405

    Article  Google Scholar 

  32. Lin X, Wang Y, Xie Q, Pedram M (2015) Task scheduling with dynamic voltage and frequency scaling for energy minimization in the mobile cloud computing environment. IEEE Trans Serv Comput 8:2:175–186

    Article  Google Scholar 

  33. Ma X, Zhao Y, Zhang L, Wang H, Peng L (2013) When mobile terminals meet the cloud: computation offloading as the bridge. IEEE Netw 27:5:28–33

    Article  Google Scholar 

  34. Mahmoodi SE, Subbalakshmi KP (2016) A time-adaptive heuristic for cognitive cloud offloading in multi-RAT enabled wireless devices. IEEE Trans Cogn Commun Netw 2:2:194–207

    Article  Google Scholar 

  35. Mahmoodi SE, Subbalakshmi KP, Sagar V (2015) Cloud offloading for multi-radio enabled mobile devices. In: IEEE International Communication Conference (ICC), pp 1–6

    Google Scholar 

  36. Mahmoodi SE, Uma RN, Subbalakshmi KP (2016) Optimal joint scheduling and cloud offloading for mobile applications. IEEE Trans Cloud Comput PP(99):1. doi:10.1109/TCC.2016.2560808

    Article  Google Scholar 

  37. Mahmoodi SE, Subbalakshmi KP, Uma RN (2017) Optimal cognitive scheduling and cloud offloading for mobile applications in multi-radio enabled devices. IEEE Trans Mob Comput. Under 2nd round of review, pp 1–11

    Google Scholar 

  38. MPTCP in iOS (2017). https://support.apple.com/en-us/HT201373

  39. Neely MJ (2010) Stochastic network optimization with application to communication and queuing systems. Morgan and Claypool Publishers. ISBN:160845455X, 9781608454556

    Google Scholar 

  40. Nguyen-Vuong Q-T, Ghamri-Doudane Y, Agoulmine N (2008) On utility models for access network selection in wireless heterogeneous networks. In: IEEE Network Operations and Management Symposium, pp 144–151

    MATH  Google Scholar 

  41. Nir M, Matrawy A, St-Hilaire M (2014) An energy optimizing scheduler for mobile cloud computing environments. In: IEEE Conference on Computer Communications Workshops (INFOCOM), pp 404–409

    Google Scholar 

  42. NSFCloud (2017). https://www.chameleoncloud.org/nsf-cloud-workshop/

  43. Ou S, Yang K, Zhang J (2007) An effective offloading middleware for pervasive services on mobile devices. Pervasive Mob Comput 3:4:362–385

    Article  Google Scholar 

  44. Ousterhout JK (1998) Scripting: higher level programming for the 21st century. Computer 31(3):23–30

    Article  Google Scholar 

  45. PC World (2017). http://www.pcworld.com/article/2936872/wifi-and-lte-join-up-for-gigabit-mobile-service-in-korea.html

  46. Peng M, Li Y, Jiang J, Li J, Wang C (2014) Heterogeneous cloud radio access networks: a new perspective for enhancing spectral and energy efficiencies. IEEE Wirel Commun 21:6:126–135

    Article  Google Scholar 

  47. Picu A, Spyropoulos T, Hossmann T (2012) An analysis of the information spreading delay in heterogeneous mobility DTNs. In: IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp 1–10

    Google Scholar 

  48. Ramachandran KN, Belding EM, Almeroth KC, Buddhikot MM (2006) Interference-aware channel assignment in multi-radio wireless mesh networks. In: IEEE Conference on Computer Communications (INFOCOM), pp 1–12

    Google Scholar 

  49. Rui Y, Cheng P, Li M, Zhang QT, Guizani M (2013) Carrier aggregation for LTE-advanced: uplink multiple access and transmission enhancement features. IEEE Wirel Commun 20:4:101–108

    Article  Google Scholar 

  50. Sagar V (2016) Software defined access: cognition in multi-radio networks. PhD dissertation at Stevens Institute of Technology, Hoboken

    Google Scholar 

  51. Saquib N, Hossain E, Dong IK (2013) Fractional frequency reuse for interference management in LTE-advanced hetnets. IEEE Wirel Commun 20:2:113–122

    Article  Google Scholar 

  52. Sardellitti S, Scutari G, Barbarossa S (2014) Joint optimization of radio and computational resources for multicell mobile cloud computing. In: IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp 354–358

    Google Scholar 

  53. Satyanarayanan M, Bahl P, Caceres R, Davies N (2009) The case for VM-based cloudlets in mobile computing. IEEE Pervasive Comput 8:4:14–23

    Article  Google Scholar 

  54. Shi C, Pandurangan P, Ni K, Yang J, Ammar M, Naik M, Zegura E (2013) IC-cloud: computation offloading to an intermittently-connected cloud. In: SCS Technical Report in Georgia Institute of Technology. http://hdl.handle.net/1853/45985

    Google Scholar 

  55. Shi C, Habak K, Pandurangan P, Ammar M, Naik M, Zegura E (2014) COSMOS: computation offloading as a service for mobile devices. In: Proceedings of the ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), pp 287–296

    Google Scholar 

  56. Shu P, Liu F, Jin H, Chen M, Wen F, Qu Y (2013) eTime: energy-efficient transmission between cloud and mobile devices. In: IEEE Proceedings of INFOCOM, pp 195–199

    Google Scholar 

  57. Stevens-Navarro E, Wong VWS (2006) Comparison between vertical handoff decision algorithms for heterogeneous wireless networks. IEEE Veh Technol Conf (VTC) 2:947–951

    Google Scholar 

  58. Toma ASM, Chen J-J (2014) Computation offloading for frame-based real-time tasks under given server response time guarantees. Leibniz Trans Embed Syst 1:2:1–21

    Google Scholar 

  59. Wang L, Kuo G-SGS (2013) Mathematical modeling for network selection in heterogeneous wireless networks; a tutorial. IEEE Commun Surv Tutorials 15:1:271–292

    Article  Google Scholar 

  60. Wu H, Wang Q, Wolter K (2013) Tradeoff between performance improvement and energy saving in mobile cloud offloading systems. In: IEEE International Conference on Communications Workshops (ICC), pp 728–732

    Google Scholar 

  61. Zhang Y, Niyato D, Wang P (2015) Offloading in mobile cloudlet systems with intermittent connectivity. IEEE Trans Mob Comput 14(12):2516–2529

    Article  Google Scholar 

  62. Zhang W, Wen Y, Guan K, Kilper D, Luo H, Wu DO (2013) Energy-optimal mobile cloud computing under stochastic wireless channel. IEEE Trans Wirel Commun 12:9:4569–4581

    Article  Google Scholar 

  63. Zhang W, Wen Y, Wu DO (2013) Energy-efficient scheduling policy for collaborative execution in mobile cloud computing. In: IEEE Proceedings of INFOCOM, pp 190–194

    Google Scholar 

  64. Zhang X, Zhang Y, Yu R, Wang W, Guizani M (2014) Enhancing spectral-energy efficiency for LTE-advanced heterogeneous networks: a users social pattern perspective. IEEE Wirel Commun 21:2:10–17

    Article  Google Scholar 

  65. Zhang Y, Niyato D, Wang P (2015) Offloading in mobile cloudlet systems with intermittent connectivity. IEEE Trans Mob Comput 14:12:2516:25291–10

    Google Scholar 

  66. Zhang W, Wen Y, Wu DO (2015) Collaborative task execution in mobile cloud computing under a stochastic wireless channel. IEEE Trans Wirel Commun 14:1:81–93

    Article  Google Scholar 

  67. Zhou B, Dastjerdi AV, Calheiros RN, Srirama SN, Buyya R (2015) A context sensitive offloading scheme for mobile cloud computing service. In: IEEE International Conference on Cloud Computing (CLOUD), pp 869–876

    Google Scholar 

  68. Zorzi M, Zanella A, Testolin A, De Filippo De Grazia M, Zorzi M (2015) Cognition-based networks: a new perspective on network optimization using learning and distributed intelligence. IEEE Access 3:1512–1530

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eman S. Mahmoodi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry

Mahmoodi, E.S., Subbalakshmi, K.P., Uma, R.N. (2017). Spectrum-Aware Mobile Computing Using Cognitive Networks. In: Zhang, W. (eds) Handbook of Cognitive Radio . Springer, Singapore. https://doi.org/10.1007/978-981-10-1389-8_22-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1389-8_22-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1389-8

  • Online ISBN: 978-981-10-1389-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics