Skip to main content

Spectrum Sensing in Multi-antenna Cognitive Radio Systems via Distributed Subspace Tracking Techniques

  • Living reference work entry
  • First Online:
  • 117 Accesses

Abstract

Among the many different techniques that have been suggested for spectrum sensing, the eigenvalue-based spectrum sensing (EBSS) techniques exhibit some important advantages. Specifically, they can operate in a totally blind manner while they offer remarkably improved performance for specific types of signals, especially when compared to energy-based methods. Until recently, most of the cooperative EBSS techniques that could be found in the literature were batch and centralized ones, thus suffering from limitations that render them impractical in several cases. Practical cooperative adaptive versions of typical EBSS techniques, which could be applied in a completely distributed manner, have been proposed very recently. The aim of this chapter is (a) to briefly review existing cooperative EBSS techniques of the batch and centralized type and (b) to present in more detail adaptive and distributed versions of typical EBSS techniques. Focusing on the latter case, at first, we present adaptive EBSS techniques for the maximum eigenvalue detector (MED), the maximum-minimum eigenvalue detector (MMED), and the generalized likelihood ratio test (GLRT) scheme, respectively, for a single-user (noncooperative) case. Then, a distributed subspace tracking method is presented which enables the cooperating nodes to track the joint subspace of their received signals. Based on this method, cooperative distributed versions of the adaptive EBSS techniques have been developed that overcome the limitations of the previous batch centralized approaches. Numerical results show that the distributed techniques exhibit good performance, even though they require reduced computational complexity compared to their batch and centralized counterparts.

This is a preview of subscription content, log in via an institution.

References

  1. Bazerque JA, Giannakis GB (2010) Distributed spectrum sensing for cognitive radio networks by exploiting sparsity. IEEE Trans Signal Process 58(3):1847–1862

    Article  MathSciNet  Google Scholar 

  2. Cardoso LS, Debbah M, Bianchi P, Najim J (2008) Cooperative spectrum sensing using random matrix theory. In: 3rd International Symposium on Wireless Pervasive Computing – ISWPC 2008, pp 334–338

    Google Scholar 

  3. Chaudhari S, Koivunen V, Poor HV (2009) Autocorrelation-based decentralized sequential detection of OFDM signals in cognitive radios. IEEE Trans Signal Process 57(7):2690–2700

    Article  MathSciNet  Google Scholar 

  4. Chen Y, Oh HS (2016) A survey of measurement-based spectrum occupancy modeling for cognitive radios. IEEE Commun Surv Tutorials 18(1):848–859. Firstquarter

    Google Scholar 

  5. Cicho K, Kliks A, Bogucka H (2016) Energy-efficient cooperative spectrum sensing: a survey. IEEE Commun Surv Tutorials 18(3):1861–1886. Thirdquarter

    Google Scholar 

  6. Cisco Visual Networking Index Cisco (2014) Global mobile data traffic forecast update, pp 2013–2018. White paper

    Google Scholar 

  7. de Lima MV, Mello LdS (2013) Cognitive radio simulation based on spectrum occupancy measurements at one site in Brazil. In: Microwave Optoelectronics Conference (IMOC), 2013 SBMO/IEEE MTT-S International, pp 1–5

    Google Scholar 

  8. Digham FF, Alouini M-S, Simon MK (2003) On the energy detection of unknown signals over fading channels. In: IEEE International Conference on Communications – ICC 2003, vol 5, pp 3575–3579

    Google Scholar 

  9. Doukopoulos XG, Moustakides GV (2008) Fast and stable subspace tracking. IEEE Trans Signal Process 56(4):1452–1465

    Article  MathSciNet  Google Scholar 

  10. Duan D, Yang L, Principe JC (2010) Cooperative diversity of spectrum sensing for cognitive radio systems. IEEE Trans Signal Process 58(6):3218–3227

    Article  MathSciNet  Google Scholar 

  11. Ghasemi A, Sousa ES (2005) Collaborative spectrum sensing for opportunistic access in fading environments. In: First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, DySPAN 2005, Baltimore, pp 131–136

    Google Scholar 

  12. Ghozzi M, Marx F, Dohler M, Palicot J (2006) Cyclostatilonarilty-based test for detection of vacant frequency bands. In: First International Conference on Cognitive Radio Oriented Wireless Networks and Communications, CROWNCOM 2006, Mykonos Island, pp 1–5

    Google Scholar 

  13. Goldsmith A, Jafar SA, Maric I, Srinivasa S (2009) Breaking spectrum gridlock with cognitive radios: an information theoretic perspective. Proc IEEE 97(5):894–914

    Article  Google Scholar 

  14. Hack DE, Rossler CW, Patton LK (2014) Multichannel detection of an unknown rank-n signal using uncalibrated receivers. IEEE Signal Process Lett 21(8):998–1002

    Article  Google Scholar 

  15. Hanafi E, Martin PA, Smith PJ, Coulson AJ (2013) Extension of quickest spectrum sensing to multiple antennas and rayleigh channels. IEEE Commun Lett 17(4):625–628

    Article  Google Scholar 

  16. Havary-Nassab V, ShahbazPanahi S, Grami A, Luo Z-Q (2008) Distributed beamforming for relay networks based on second-order statistics of the channel state information. IEEE Trans Signal Process 56(9):4306–4316

    Article  MathSciNet  Google Scholar 

  17. Haykin S (2005) Cognitive radio: brain-empowered wireless communications. IEEE J Sel Areas Commun 23(2):201–220

    Article  Google Scholar 

  18. Haykin S, Thomson DJ, Reed JH (2009) Spectrum sensing for cognitive radio. Proc IEEE 97(5):849–877

    Article  Google Scholar 

  19. Hur Y, Park J, Woo W, Lim K, Lee CH, Kim SH, Laskar J (2006) A wideband analog multi-resolution spectrum sensing (MRSS) technique for cognitive radio (CR) systems. In: 2006 IEEE International Symposium on Circuits and Systems, p 4

    Google Scholar 

  20. Johnson NL, Kotz S, Balakrishnan N (1994) Continuous univariate distributions. Wiley Series in Probability and Statistics, vol 1, 2nd edn. Wiley-Interscience, New York

    Google Scholar 

  21. Jouini W (2011) Energy detection limits under log-normal approximated noise uncertainty. IEEE Signal Process Lett 18(7):423–426

    Article  Google Scholar 

  22. Kim S-J, Giannakis GB (2010) Sequential and cooperative sensing for multi-channel cognitive radios. IEEE Trans Signal Process 58(8):4239–4253

    Article  MathSciNet  Google Scholar 

  23. Kortun A, Ratnarajah T, Sellathurai M, Zhong C, Papadias CB (2011) On the performance of eigenvalue-based cooperative spectrum sensing for cognitive radio. IEEE J Sel Top Signal Process 5(1):49–55

    Article  Google Scholar 

  24. Kostylev VI (2002) Energy detection of a signal with random amplitude. In: IEEE International Conference on Communications – ICC 2002, vol 3, pp 1606–1610

    Google Scholar 

  25. Li Z, Yu FR, Huang M (2010) A distributed consensus-based cooperative spectrum-sensing scheme in cognitive radios. IEEE Trans Veh Technol 59(1):383–393

    Article  Google Scholar 

  26. Li L, Scaglione A, Manton JH (2011) Distributed principal subspace estimation in wireless sensor networks. IEEE J Sel Top Signal Process 5(4):725–738

    Article  Google Scholar 

  27. Long C, Wang H, Li B (2010) Collaborative spectrum sensing based on signal correlation in cognitive radio networks. In: IEEE Global Telecommunications Conference – GLOBECOM 2010, pp 1–5

    Google Scholar 

  28. Lorden G (1971) Procedures for reacting to a change in distribution. Ann Math Stat 42:18971908

    Article  MathSciNet  MATH  Google Scholar 

  29. Loyka SL (2001) Channel capacity of MIMO architecture using the exponential correlation matrix. IEEE Commun Lett 5(9):369–371

    Article  Google Scholar 

  30. Ma J, Li GY, Juang B-H (2009) Signal processing in cognitive radio. Proc IEEE 97(5):805–823

    Article  Google Scholar 

  31. Matsui M, Shiba H, Akabane K, Uehara K (2007) A novel cooperative sensing technique for cognitive radio. In: IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2007, Athens, pp 1–5

    Google Scholar 

  32. Mitola J (1999) Cognitive radio for flexible mobile multimedia communications. In: 1999 IEEE International Workshop on Mobile Multimedia Communications (MoMuC’99), pp 3–10

    Google Scholar 

  33. Mitola J (2000) Cognitive radio – an integrated agent architecture for software defined radio. DTech thesis, Royal Institute of Technology (KTH), Kista

    Google Scholar 

  34. Mitola J, Maguire GQ (1999) Cognitive radio: making software radios more personal. IEEE Pers Commun 6(4):13–18

    Article  Google Scholar 

  35. Nadler B, Penna F, Garello R (2011) Performance of eigenvalue-based signal detectors with known and unknown noise level. In: Proceedings of the 2011 IEEE International Conference on Communications – ICC 2011, Kyoto, pp 1–5

    Google Scholar 

  36. Penna F, Garello R, Figlioli D, Spirito MA (2009) Exact non-asymptotic threshold for eigenvalue-based spectrum sensing. In: Proceedings of the Fourth International Conference on Cognitive Radio Oriented Wireless Networks and Communications – CROWNCOM 2009, Hannover, pp 1–5

    Google Scholar 

  37. Quan Z, Cui S, Sayed AH (2008) Optimal linear cooperation for spectrum sensing in cognitive radio networks. IEEE J Sel Top Signal Process 2(1):28–40

    Article  Google Scholar 

  38. Ramirez D, Vazquez-Vilar G, Lopez-Valcarce R, Via J, Santamaria I (2011) Detection of rank-p signals in cognitive radio networks with uncalibrated multiple antennas. IEEE Trans Signal Processing 59(8):3764–3774

    Article  MathSciNet  Google Scholar 

  39. Reyes C, Hilaire T, Mecklenbrauker CF (2009) Distributed projection approximation subspace tracking based on consensus propagation. In: 3rd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing – CAMSAP 2009, Dutch Antilles, pp 340–343

    Google Scholar 

  40. Sai Shankar N, Cordeiro C, Challapali K (2005) Spectrum agile radios: utilization and sensing architectures. In: First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks – DySPAN 2005, pp 160–169

    Article  Google Scholar 

  41. Sanders FH (1998) Broadband spectrum surveys in Denver, CO, San Diego, CA, and Los Angeles, CA: methodology, analysis, and comparative results. In: 1998 IEEE International Symposium on Electromagnetic Compatibility, vol 2, pp 988–993

    Google Scholar 

  42. Sayed AH, Lopes CG (2007) Distributed processing over adaptive networks. In: 9th International Symposium on Signal Processing and Its Applications – ISSPA 2007, Sharjah, pp 1–3

    Google Scholar 

  43. Shiryaev AN (1961) The problem of quickest detection of a violation of stationary behavior. Dokl Akad Nauk SSSR 138:10391042

    MathSciNet  Google Scholar 

  44. Shiryaev AN (1961) The problem of the most rapid detection of a disturbance in a stationary process. Sov Math Dokl 2:795799

    Google Scholar 

  45. Shiryaev AN (1963) On optimum methods in quickest detection problems, theory. Theory Prob Appl 8:2246

    MATH  Google Scholar 

  46. Sonnenschein A, Fishman PM (1992) Radiometric detection of spread-spectrum signals in noise of uncertain power. IEEE Trans Aerosp Electron Syst 28(3):654–660

    Article  Google Scholar 

  47. Sutton PD, Nolan KE, Doyle LE (2008) Cyclostationary signatures in practical cognitive radio applications. IEEE J Sel Areas Commun 26(1):13–24

    Article  Google Scholar 

  48. Taher TM, Bacchus RB, Zdunek KJ, Roberson DA (2011) Long-term spectral occupancy findings in Chicago. In: 2011 IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), pp 100–107

    Google Scholar 

  49. Taherpour A, Nasiri-Kenari M, Gazor S (2010) Multiple antenna spectrum sensing in cognitive radios. IEEE Trans Wirel Commun 9(2):814–823

    Article  Google Scholar 

  50. Tandra R, Sahai A (2008) SNR walls for signal detection. IEEE J Sel Top Signal Process 2(1):4–17

    Article  Google Scholar 

  51. Trefethen LN, Bau D (1997) Numerical linear algebra, 1st edn. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  52. Tsinos CG, Berberidis K (2009) An adaptive beamforming scheme for cooperative wireless networks. In: 16th International Conference on Digital Signal Processing, pp 1–6

    Google Scholar 

  53. Tsinos CG, Berberidis K (2009) A new cooperative technique for wireless communications with improved diversity-multiplexing tradeoff. In: 17th European Signal Processing Conference, pp 135–139

    Google Scholar 

  54. Tsinos CG, Berberidis K (2010) A cooperative uplink transmission technique for the single- and multi-user case. In: IEEE International Conference on Communications, pp 1–5

    Google Scholar 

  55. Tsinos CG, Berberidis K (2012) Multi-antenna cooperative systems with improved diversity multiplexing tradeoff. In: IEEE Wireless Communications and Networking Conference (WCNC), pp 1093–1097

    Google Scholar 

  56. Tsinos CG, Berberidis K (2013) Adaptive eigenvalue-based spectrum sensing for multi-antenna cognitive radio systems. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp 4454–4458

    Google Scholar 

  57. Tsinos CG, Berberidis K (2015) A cooperative uplink transmission technique with improved diversity-multiplexing tradeoff. IEEE Trans Veh Technol 64(7):2883–2896

    Google Scholar 

  58. Tsinos CG, Berberidis K (2015) Decentralized adaptive eigenvalue-based spectrum sensing for multiantenna cognitive radio systems. IEEE Trans Wirel Commun 14(3):1703–1715

    Article  Google Scholar 

  59. Tsinos CG, Vlachos E, Berberidis K (2013) Distributed blind adaptive computation of beamforming weights for relay networks. In: 24th IEEE Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp 570–574

    Google Scholar 

  60. Unnikrishnan J, Veeravalli VV (2008) Cooperative sensing for primary detection in cognitive radio. IEEE J Sel Top Signal Process 2(1):18–27

    Article  Google Scholar 

  61. Vardoulias G, Faroughi-Esfahani J, Clemo G, Haines R (2001) Blind radio access technology discovery and monitoring for software defined radio communication systems: problems and techniques. In: Second International Conference on 3G Mobile Communication Technologies (Conference Publication No. 477), pp 306–310

    Google Scholar 

  62. Wang P, Xiao L, Zhou S, Wang J (2007) Optimization of detection time for channel efficiency in cognitive radio systems. In: 2007 IEEE Wireless Communications and Networking Conference, pp 111–115

    Google Scholar 

  63. Wang P, Fang J, Han N, Li H (2010) Multiantenna-assisted spectrum sensing for cognitive radio. IEEE Trans Veh Technol 59(4):1791–1800

    Article  Google Scholar 

  64. Welch BL (1938) The significance of the difference between two means when the population variances are unequal. Biometrika 29(3/4):350–362

    Article  MATH  Google Scholar 

  65. Xin Y, Zhang H, Lai L (2014) A low-complexity sequential spectrum sensing algorithm for cognitive radio. IEEE J Sel Areas Commun 32(3):387–399

    Article  Google Scholar 

  66. Yang B (1995) Projection approximation subspace tracking. IEEE Trans Signal Process 43(1):95–107

    Article  Google Scholar 

  67. Yang J-F, Kaveh M (1988) Adaptive eigensubspace algorithms for direction or frequency estimation and tracking. IEEE Trans Acoust Speech Signal Process 36(2):241–251

    Article  Google Scholar 

  68. Yilmaz Y, Moustakides GV, Wang X (2012) Cooperative sequential spectrum sensing based on level-triggered sampling. IEEE Trans Signal Process 60(9):4509–4524

    Article  MathSciNet  Google Scholar 

  69. Yucek T, Arslan H (2009) A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun Surv Tutorials 11(1):116–130

    Article  Google Scholar 

  70. Zarrin S, Lim TJ (2009) Cooperative quickest spectrum sensing in cognitive radios with unknown parameters. In: IEEE Global Telecommunications Conference – GLOBECOM 2009, pp 1–6

    Google Scholar 

  71. Zeng Y, Koh CL, Liang Y-C (2008) Maximum eigenvalue detection: theory and application. In: Proceedings of the 2008 IEEE International Conference on Communications – ICC 2008, Beijing, pp 4160–4164

    Google Scholar 

  72. Zeng Y, Liang Y-C (2009) Eigenvalue-based spectrum sensing algorithms for cognitive radio. IEEE Trans Commun 57(6):1784–1793

    Article  Google Scholar 

  73. Zhao Q, Geirhofer S, Tong L, Sadler BM (2007) Optimal dynamic spectrum access via periodic channel sensing. In: 2007 IEEE Wireless Communications and Networking Conference, pp 33–37

    Google Scholar 

  74. Zhao Q, Ye J (2010) Quickest detection in multiple on-off processes. IEEE Trans Signal Process 58(12):5994–6006

    Article  MathSciNet  Google Scholar 

  75. Zou Q, Zheng S, Sayed AH (2010) Cooperative sensing via sequential detection. IEEE Trans Signal Process 58(12):6266–6283

    Article  MathSciNet  Google Scholar 

Further Reading

  1. Badeau R, David B, Richard G (2005) Fast approximated power iteration subspace tracking. IEEE Trans Signal Process 53(8):2931–2941

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos G. Tsinos .

Editor information

Editors and Affiliations

Section Editor information

Appendix: Derivation of the Distribution of the MMED Test Statistic Under the \(\mathcal{H}_{0}\) Hypothesis

Appendix: Derivation of the Distribution of the MMED Test Statistic Under the \(\mathcal{H}_{0}\) Hypothesis

Let us assume that two RVs T 1 and T 2 follow the same distribution with that of the MED test statistic. The CDF of the later distribution is given by (16). The corresponding probability density function (PDF) is computed by taking the derivative of (16). That is,

$$\displaystyle{ f_{T_{i}}(\tau _{i}) = \frac{\xi ^{\rho }} {\varGamma (\rho )}\tau _{i}^{\rho -1}e^{-\rho \tau _{i} }. }$$
(32)

We are interested in the distribution of the random variable Y 1 = T 1T 2. Let us also define the auxiliary random variable Y 2 = T 2. Thus we have,

$$\displaystyle\begin{array}{rcl} f_{1}(t_{1},t_{2})& =& \frac{t_{1}} {t_{2}} \\ f_{2}(t_{1},t_{2})& =& t_{2},{}\end{array}$$
(33)

where \(t_{i} \in \mathbb{R}^{+}\). The inverse functions of the ones of (33) are given by

$$\displaystyle\begin{array}{rcl} f_{1}^{-1}(t_{ 1},t_{2})& =& t_{1}t_{2} \\ f_{2}^{-1}(t_{ 1},t_{2})& =& t_{2},{}\end{array}$$
(34)

The joint PDF of variables Y 1 and Y 2 is given by

$$\displaystyle{ f_{Y _{1},Y _{2}}(y_{1},y_{2}) = f_{T_{1},T_{2}}\big(f_{1}^{-1}(y_{ 1},y_{2}),f_{2}^{-1}(y_{ 1},y_{2})\big)\vert J(y_{1},y_{2})\vert, }$$
(35)

where \(J(y_{1},y_{2}) = \frac{\partial (t_{1},t_{2})} {\partial (y_{1},y_{2})}\) is the Jacobian matrix of the transformation and | J(y 1, y 2) | = y 2 is its determinant.

Observe now that, since the eigenvalues are estimated via (11), there are statistically independent. That is, the joint PDF of the variables under consideration T 1 and T 2 can be computed as the product of the corresponding marginal ones (16). Therefore, from (35) the joint PDF of Y 1 and Y 2 is given by

$$\displaystyle\begin{array}{rcl} f_{Y _{1},Y _{2}}(y_{1},y_{2})& =& f_{T_{1}}(y_{1}y_{2})f_{T_{2}}(y_{2})y_{2} \\ & =& \frac{\xi ^{2\rho }} {\varGamma ^{2}(\rho )}y_{1}^{\rho -1}y_{ 2}^{2\rho -1}e^{-\xi y_{2}(y_{1}+1)}{}\end{array}$$
(36)

In order to compute the marginal PDF of RV Y 1, we integrate the joint one of (36) with respect to y 2. That is

$$\displaystyle\begin{array}{rcl} f_{Y _{1}}(y_{1})& =& \frac{y_{1}^{\rho -1}} {\xi ^{2\rho }\varGamma ^{2}(\rho )} \int _{0}^{+\infty }y_{ 2}^{2\rho -1}e^{-\xi y_{2}(y_{1}+1)}dy_{ 2} \\ & =& \frac{y_{1}^{\rho -1}\xi ^{2\rho }\varGamma (2\rho )} {(1 + y_{1})^{2\rho }\xi ^{2\rho }\varGamma ^{2}(\rho )} = \frac{y_{1}^{\rho -1}} {B(\rho,\rho )(1 + y_{1})^{2\rho }},{}\end{array}$$
(37)

where the following property of the beta function [20] was used

$$\displaystyle{ B(\rho _{1},\rho _{2}) =\int _{ 0}^{1}x^{\rho _{1} }(1 - x)^{\rho _{2}-1}dx = \frac{\varGamma (\rho _{1} +\rho _{2})} {\varGamma (\rho _{1})\varGamma (\rho _{2})}. }$$
(38)

By integrating (37) we derive the corresponding CDF of the beta prime distribution given by (18) of Lemma 1, and the proof is completed . □

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry

Tsinos, C.G., Berberidis, K. (2017). Spectrum Sensing in Multi-antenna Cognitive Radio Systems via Distributed Subspace Tracking Techniques. In: Zhang, W. (eds) Handbook of Cognitive Radio . Springer, Singapore. https://doi.org/10.1007/978-981-10-1389-8_15-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1389-8_15-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1389-8

  • Online ISBN: 978-981-10-1389-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics