Skip to main content

Analog to Digital Cognitive Radio

  • Living reference work entry
  • First Online:
Handbook of Cognitive Radio

Abstract

Enabling cognitive radio (CR) requires revisiting the traditional task of spectrum sensing with specific and demanding requirements in terms of detection performance, real-time processing, and robustness to noise. Unfortunately, conventional spectrum sensing methods do not satisfy these demands. In particular, the Nyquist rate of signals typically sensed by a CR is prohibitively high so that sampling at this rate necessitates sophisticated and expensive analog to digital converters, which lead to a torrent of samples. Over the past few years, several sampling methods have been proposed that exploit signals’ a priori known structure to sample them below Nyquist. In this chapter, we review some of these techniques and tie them to the task of spectrum sensing for CRs. We then show how other spectrum sensing challenges can be tackled in the sub-Nyquist regime. First, to cope with low signal-to-noise ratios, spectrum sensing may be based on second-order statistics recovered from the low rate samples. In particular, cyclostationary detection allows to differentiate between communication signals and stationary noise. Next, CR networks, that perform collaborative low rate spectrum sensing, have been proposed to overcome fading and shadowing channel effects. Last, to enhance CR efficiency, we present joint spectrum sensing and direction of arrival estimation methods from sub-Nyquist samples. These allow to map the temporarily vacant bands both in terms of frequency and space. Throughout this chapter, we highlight the relation between theoretical algorithms and results and their practical implementation. We show hardware simulations performed on a prototype built with off-the-shelf devices, demonstrating the feasibility of sub-Nyquist spectrum sensing in the context of CR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Mishali M, Eldar YC (2011) Sub-Nyquist sampling: bridging theory and practice. IEEE Signal Process Mag 28(6):98–124

    Article  Google Scholar 

  2. Eldar YC (2015) Sampling theory: beyond bandlimited systems. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  3. Tropp JA, Laska JN, Duarte MF, Romberg JK, Baraniuk RG (2010) Beyond Nyquist: efficient sampling of sparse bandlimited signals. IEEE Trans Inf Theory 56:520–544

    Article  MathSciNet  MATH  Google Scholar 

  4. Fleyer M, Linden A, Horowitz M, Rosenthal A (2010) Multirate synchronous sampling of sparse multiband signals. IEEE Trans Signal Process 58:1144–1156

    Article  MathSciNet  Google Scholar 

  5. Mishali M, Eldar YC (2011) Wideband spectrum sensing at sub-Nyquist rates. IEEE Signal Process Mag 28:102–135

    Article  Google Scholar 

  6. Mishali M, Eldar YC (2009) Blind multi-band signal reconstruction: compressed sensing for analog signals. IEEE Trans Signal Process 57(3):993–1009

    Article  MathSciNet  Google Scholar 

  7. Mishali M, Eldar YC (2010) From theory to practice: sub-Nyquist sampling of sparse wideband analog signals. IEEE J Sel Top Signal Process 4(2):375–391

    Article  Google Scholar 

  8. Mishali M, Eldar YC, Elron AJ (2011) Xampling: signal acquisition and processing in union of subspaces. IEEE Trans Signal Process 59:4719–4734

    Article  MathSciNet  Google Scholar 

  9. Urkowitz H (1967) Energy detection of unknown deterministic signals. Proc IEEE 55:523–531

    Article  Google Scholar 

  10. Arias-Castro E, Eldar YC (2011) Noise folding in compressed sensing. IEEE Signal Process Lett 18(8):478–481

    Article  Google Scholar 

  11. North DO (1963) An analysis of the factors which determine signal/noise discrimination in pulsed carrier systems. Proc IEEE 51:1016–1027

    Article  Google Scholar 

  12. Turin GL (1960) An introduction to matched filters. IRE Trans Inf Theory 6:311–329

    Article  MathSciNet  Google Scholar 

  13. Gardner WA, Napolitano A, Paura L (2006) Cyclostationarity: half a century of research. Signal Process 86:639–697

    Article  MATH  Google Scholar 

  14. Napolitano A (2016) Cyclostationarity: new trends and applications. Signal Process 120:385–408

    Article  Google Scholar 

  15. Akyildiz IF, Lo BF, Balakrishnan R (2011) Cooperative spectrum sensing in cognitive radio networks: a survey. Phys Commun 4:40–62

    Article  Google Scholar 

  16. Mishra SM, Sahai A, Brodersen RW (2006) Cooperative sensing among cognitive radios. IEEE Int Conf Commun 1658–1663

    Google Scholar 

  17. Letaief KB, Zhang W (2009) Cooperative communications for cognitive radio networks. Proc IEEE 97(5):878–893

    Article  Google Scholar 

  18. Pisarenko VF (1973) The retrieval of harmonics from a covariance function. Geophys J R Astron Soc 33:347–366

    Article  MATH  Google Scholar 

  19. Schmidt RO (1986) Multiple emitter location and signal parameter estimation. IEEE Trans Antennas Propag 34:276–280

    Article  Google Scholar 

  20. Roy R, Kailath T (1989) ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans Signal Process 37:984–995

    Article  MATH  Google Scholar 

  21. Eldar YC, Kutyniok G (2012) Compressed sensing: theory and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  22. Landau H (1967) Necessary density conditions for sampling and interpolation of certain entire functions. Acta Math 117:37–52

    Article  MathSciNet  MATH  Google Scholar 

  23. Venkataramani R, Bresler Y (2000) Perfect reconstruction formulas and bounds on aliasing error in sub-Nyquist nonuniform sampling of multiband signals. IEEE Trans Inf Theory 46:2173–2183

    Article  MathSciNet  MATH  Google Scholar 

  24. Mishali M, Eldar YC, Dounaevsky O, Shoshan E (2011) Xampling: analog to digital at sub-Nyquist rates. IET Circuits Devices Syst 5:8–20

    Article  Google Scholar 

  25. Israeli E, Tsiper S, Cohen D, Reysenson A, Hilgendorf R, Shoshan E, Eldar YC (2014) Hardware calibration of the modulated wideband converter. In: IEEE Global Communications Conference, Austin, pp 948–953

    Google Scholar 

  26. Mishali M, Eldar YC (2009) Expected RIP: conditioning of the modulated wideband converter. In: IEEE Information Theory Workshop, Volos, pp 343–347

    Google Scholar 

  27. Gan HWL, Wang H (2013) Deterministic binary sequences for modulated wideband converter. In: International Conference Sampling Theory and Applications, Bremen

    Google Scholar 

  28. Stein S, Yair O, Cohen D, Eldar YC (2016) CaSCADE: compressed carrier and DOA estimation. Arxiv:1604.02723 [cs.IT]

    Google Scholar 

  29. Gold R (1967) Optimal binary sequences for spread spectrum multiplexing (corresp.). IEEE Trans Inf Theory 13(4):619–621

    Article  MATH  Google Scholar 

  30. Cohen D, Akiva A, Avraham B, Eldar YC (2015) Distributed cooperative spectrum sensing from sub-Nyquist samples for cognitive radios. In: IEEE Workshop Signal Proceedings of Advances Wireless Communications, Stockholm, pp 336–340

    Google Scholar 

  31. Cohen D, Akiva A, Avraham B, Eldar YC (2015) Centralized cooperative spectrum sensing from sub-Nyquist samples for cognitive radios. In: IEEE International Conference on Communications, London, pp 7487–7491

    Google Scholar 

  32. Cohen D, Eldar YC (2016) Sub-Nyquist cyclostationary detection for cognitive radio. Arxiv:1604.02659 [cs.IT]

    Google Scholar 

  33. Adams D, Eldar Y, Murmann B (2016) A mixer frontend for a four-channel modulated wideband converter with 62 db blocker rejection. In: 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), May 2016, San Francisco, pp 286–289

    Google Scholar 

  34. Lexa MA, Davies ME, Thompson JS (2011) Compressive and noncompressive power spectral density estimation from periodic nonuniform samples. CoRR, vol. abs/1110.2722

    Google Scholar 

  35. Ariananda DD, Leus G (2012) Compressive wideband power spectrum estimation. IEEE Trans Signal Process 60:4775–4789

    Article  MathSciNet  Google Scholar 

  36. Romero D, Leus G (2013) Compressive covariance sampling. In: Proceedings Information Theory and Applications Workshop, San Diego, pp 1–8

    Google Scholar 

  37. Yen CP, Tsai Y, Wang X (2013) Wideband spectrum sensing based on sub-Nyquist sampling. IEEE Trans Signal Process 61:3028–3040

    Article  Google Scholar 

  38. Cohen D, Eldar YC (2014) Sub-Nyquist sampling for power spectrum sensing in cognitive radios: a unified approach. IEEE Trans Signal Process 62:3897–3910

    Article  MathSciNet  Google Scholar 

  39. Tian Z, Tafesse Y, Sadler BM (2012) Cyclic feature detection with sub-nyquist sampling for wideband spectrum sensing. IEEE J Select Top Signal Process 6(1):58–69

    Article  Google Scholar 

  40. Leus G, Tian Z (2011) Recovering second-order statistics from compressive measurements. In: IEEE International Workshop on Computational Advances in Multi-sensor Adaptive Processing, San Juan, pp 337–340

    Google Scholar 

  41. Gardner W (1988) Statistical spectral analysis: a non probabilistic theory. Prentice Hall, Englewood Cliffs, NJ, USA

    Google Scholar 

  42. Papoulis A (1991) Probability, random variables, and stochastic processes. McGraw Hill, Boston

    MATH  Google Scholar 

  43. Pal P, Vaidyanathan PP (2010) Nested array: a novel approach to array processing with enhanced degrees of freedom. IEEE Trans Signal Process 58:4167–4181

    Article  MathSciNet  Google Scholar 

  44. Vaidyanathan PP, Pal P (2011) Sparse sensing with co-prime samplers and arrays. IEEE Trans Signal Process 59:573–586

    Article  MathSciNet  Google Scholar 

  45. Qu D, Tarczynski A (2007) A novel spectral estimation method by using periodic nonuniform sampling. In: Asilomar Conference on Signals, Systems and Computers, Pacific Grove, pp 1134–1138

    Google Scholar 

  46. Khatri CG, Rao CR (1968) Solutions to some functional equations and their applications to characterization of probability distributions. Sankhyā: Indian J Stat Ser A 30:167–180

    MathSciNet  MATH  Google Scholar 

  47. Arts M, Bollig A, Mathar R (2015) Analytical test statistic distributions of the mmme eigenvalue-based detector for spectrum sensing. In: 2015 International Symposium on Wireless Communication Systems (ISWCS). IEEE, Brussels, pp 496–500

    Chapter  Google Scholar 

  48. Romero D, López-Valcarce R, Leus G (2015) Compression limits for random vectors with linearly parameterized second-order statistics. IEEE Trans Inf Theory 61(3):1410–1425

    Article  MathSciNet  MATH  Google Scholar 

  49. Leech J (1956) On the representation of 1, 2, 3,…n by differences. J Lond Math Soc 1(2):160–169

    Article  MathSciNet  MATH  Google Scholar 

  50. Gardner WA (1986) The spectral correlation theory of cyclostationary time-series. Signal Process 11:13–36

    Article  Google Scholar 

  51. Cohen D, Pollak L, Eldar YC (2016) Carrier frequency and bandwidth estimation of cyclostationary multiband signals. IEEE ICASSP, Shanghai

    Book  Google Scholar 

  52. Thorndike RL (1953) Who belong in the family? Psychometrika 18:267–276

    Article  Google Scholar 

  53. Ghasemi A, Sousa ES (2005) Collaborative spectrum sensing for opportunistic access in fading environments. In: IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, pp 131–136

    Google Scholar 

  54. Sklar B (1997) Rayleigh fading channels in mobile digital communication systems part I: characterization. IEEE Commun Mag 35:90–100

    Article  Google Scholar 

  55. Wang Y, Pandharipande A, Polo YL, Leus G (2009) Distributed compressive wide-band spectrum sensing. In: IEEE Information Theory and Applications Workshop, Volos, pp 178–183

    Google Scholar 

  56. Ariananda DD, Leus G (2012) A study on cooperative compressive wideband power spectrum sensing. In: Joint WIC/IEEE Symposium on Information Theory and Signal Process, pp 102–109

    Google Scholar 

  57. Tropp J, Gilbert AC, Strauss MJ (2005) Simultaneous sparse approximation via greedy pursuit. In: IEEE International Conference on Acoustics, Speech and Signal Process, Philadelphia, vol 5, pp 721–724

    Google Scholar 

  58. Makhzani A, Valaee S (2012) Reconstruction of jointly sparse signals using iterative hard thresholding. In: IEEE International Conference on Communications, Beijing, pp 3564–3568

    Google Scholar 

  59. Duarte MF, Sarvotham S, Baron D, Wakin MB, Baraniuk RG (2005) Distributed compressed sensing of jointly sparse signals. In: IEEE Asilomar Conference on Signals, Systems and Computers, pp 1537–1541

    Google Scholar 

  60. Tian Z (2008) Compressed wideband sensing in cooperative cognitive radio networks. In: IEEE Global Communications Conference, New Orleans, pp 1–5

    Google Scholar 

  61. Zeng F, Li C, Tian Z (2011) Distributed compressive spectrum sensing in cooperative multihop cognitive networks. J Select Topics Signal Process 5:37–48

    Article  Google Scholar 

  62. Boyd S, Ghosh A, Prabhakar B, Shah D (2006) Randomized gossip algorithms. IEEE Trans Inf Theory 52:2508–2530

    Article  MathSciNet  MATH  Google Scholar 

  63. Rabi BJM, Johansson M (2009) A randomized incremental subgradient method for distributed optimization in networked systems. SIAM J Optim 20(3):1157–1170

    MathSciNet  MATH  Google Scholar 

  64. Nguyen N, Needell D, Woolf T (2014) Linear convergence of stochastic iterative greedy algorithms with sparse constraints. CoRR abs/1407.0088, [Online]. Available: http://arxiv.org/abs/1407.0088

  65. Ariananda DD, Leus G (2013) Compressive joint angular-frequency power spectrum estimation. In: Proceedings of European Signal Processing Conference, Piscataway, pp 1–5

    Google Scholar 

  66. Kumar AA, Razul SG, See CS (2014) An efficient sub-Nyquist receiver architecture for spectrum blind reconstruction and direction of arrival estimation. In: IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, pp 6781–6785

    Google Scholar 

  67. Gu J-F, Zhu W-P, Swamy MNS (2015) Joint 2-D DOA estimation via sparse L-shaped array. IEEE Trans Signal Process 63:1171–1182

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah Cohen .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry

Cohen, D., Tsiper, S., Eldar, Y.C. (2017). Analog to Digital Cognitive Radio. In: Zhang, W. (eds) Handbook of Cognitive Radio . Springer, Singapore. https://doi.org/10.1007/978-981-10-1389-8_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1389-8_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1389-8

  • Online ISBN: 978-981-10-1389-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics