Encyclopedia of Medieval Philosophy

Living Edition
| Editors: Henrik Lagerlund

Thomas Bradwardine

  • Stephen E. Lahey
Living reference work entry
DOI: https://doi.org/10.1007/978-94-024-1151-5_492-2


Thomas Bradwardine (c. 1300–1349), Merton theologian and Archbishop of Canterbury, famous both for his innovative treatises on physics and mathematics and for his vigorous attack on what he perceived as a revival of Pelagianism in Ockham’s thought regarding divine foreknowledge and future contingents. Bradwardine was one of the “Calculators” of Merton College, philosophers who emphasized the need to incorporate mathematically precise reasoning into problems associated with Aristotelian physics. His treatment of the relation of variation in the velocities of moving objects to variation in the force and resistance affecting velocity led him to postulate the need for geometric, rather than arithmetic, ratios in understanding kinematics, which would eventually develop into logarithmic mathematics. Bradwardine became interested in formal theology when investigating Ockham’s account of how God knows created actions as contingencies. His De causa Dei is a compendious refutation of every imaginable species of reasoning that denies God certain, necessary knowledge of all created action, representing the high watermark of Augustinian determinism in pre-Reformation Western theology. Unless further manuscript discoveries are made, particularly of his commentary on the Sentences, it is unlikely that Bradwardine’s theological position can be connected to his earlier mathematically oriented thinking. Bradwardine was a member of the influential circle of thinkers associated with the Bishop Richard de Bury of Durham and was closely associated with Edward III; Black Death limited the duration of his occupation of the see of Canterbury to little more than a month.

This is a preview of subscription content, log in to check access.


Primary Sources

  1. Gillmeister, H. (Ed.). (1983). An intriguing fourteenth-century document: Thomas Bradwardine’s de arte memorativa. Archiv für das Studium der neueren Sprachen und Literaturen, 220, 111–114.Google Scholar
  2. Green-Pedersen, N.-J. (Ed.). (1982). Bradwardine (?) on Ockham’s doctrine of consequences: An edition. Cahiers de l’Institute de moyen age grec et latin, 42, 85–150.Google Scholar
  3. Jean-François, G. (Ed.). (1979). Le de futuris contingentibus de Thomas Bradwardine. Recherches Augustiniennes, 14, 249–336.Google Scholar
  4. John, M. (1957). Geometry and the continuum in the fourteenth century: a philosophical analysis of Thomas Bradwardine’s ‘Tractatus de Continuo’. PhD dissertation, University of Wisconsin.Google Scholar
  5. Lamar Crosby, H. (Ed.). (1955). Thomas of Bradwardine: His Tractatus de Proportionibus: Its significance for the development of mathematical physics. Madison: University of Wisconsin Press.Google Scholar
  6. Molland, A. G. (Ed.). (1989). Thomas Bradwardine, Geometria speculativa. Stuttgart: Steiner.Google Scholar
  7. Nielsen, L. O. (Ed.). (1982). Thomas Bradwardine’s treatise on ‘incipit’ and ‘desinit’: Edition and introduction. Cahiers de l’Institute du Moyen Age Grec et Latin, 42, 1–83.Google Scholar
  8. Read, S. (2010a). Thomas Bradwardine Insolubilia. Leuven: Peeters.Google Scholar
  9. Thomas of Bradwardine. (1618). In Saville H (Ed.). De causa Dei contra Pelagium et de virtute causarum a suos Mertonenses libri tres. Ex officina Nortoniana, apud Ioannem Billivm, London.Google Scholar

Secondary Sources

  1. Benetreau-Dupin, Y. (2015). Buridan’s solution to the liar paradox. History and Philosophy of Logic, 36(1), 18–28.CrossRefGoogle Scholar
  2. Busard, H. L. L. (1998). Zwei mittelalterliche Texte zur theoretischen Mathematik: die ‘Arithmetica speculativa’ von Thomas Bradwardine und die ‘Theorica numerorum’ von Wigandus Durnheimer. Archive for History of Exact Sciences, 53(2), 97–124.CrossRefGoogle Scholar
  3. Dolnikowski, E. W. (1995). Thomas Bradwardine: A view of time and a vision of eternity in fourteenth-century thought. Leiden: Brill.Google Scholar
  4. Frost, G. R. (2013). Thomas Bradwardine on god and the foundations of modality. British Journal for the History of Philosophy, 21(2), 368–380.CrossRefGoogle Scholar
  5. Genest, J.-F. (1992). Prédétermination et Liberté Créée à Oxford au XIVe Siècle: Buckingham contre Bradwardine. Paris: Vrin.Google Scholar
  6. Genest, J.-F. (2002). Les Premiers Écrits Théologiques de Bradwardine: Textes Inédits et Découvertes Récentes. In G. R. Evans (Ed.), Medieval commentaries on the sentences of Peter Lombard (pp. 395–421). Leiden: Brill.Google Scholar
  7. Hanke, M. (2013). Implied meaning analysis of the Currian conditional. History and Philosophy of Logic, 34(4), 367–380. Leff, G. (1957). Bradwardine and the Pelagians. Cambridge: Cambridge University Press.Google Scholar
  8. Lukacs, E. (2014). Bradwardine and Buckingham on the extramundane void. Bochumer Philosophisches Jahrbuch fur Antike und Mittelalter, 17(1), 123–144.CrossRefGoogle Scholar
  9. Lukacs, E. (2015). ‘Our stories’ and ‘your stories’: Narrating the passion and resurrection in Thomas Bradwardine’s de causa Dei. Essays in Medieval Studies, 31, 183–200.CrossRefGoogle Scholar
  10. Molland, A. G. (1978). An examination of Bradwardine’s ‘geometry’. Archive for History of Exact Sciences, 19(2), 113–175.CrossRefGoogle Scholar
  11. Molland, A. G. (1996). Addressing ancient authority: Thomas Bradwardine and Prisca Sapientia. Annals of Science, 53, 213–233.CrossRefGoogle Scholar
  12. Novaes, C. D. (2008). Insolubilia and the fallacy Secundum quid and simpliciter. Vivarium, 46(2), 175–191.CrossRefGoogle Scholar
  13. Novaes, C. D. (2009). Lessons on sentential meaning from mediaeval solutions to the liar paradox. The Philosophical Quarterly, 59(237), 682–704.CrossRefGoogle Scholar
  14. Novaes, C. D. (2011). Lessons on truth from mediaeval solutions to the liar paradox. The Philosophical Quarterly, 61(242), 58–78. Oberman, H. (1957). Archbishop Thomas Bradwardine: A fourteenth century Augustinian. Utrecht: Kemink & Zoon.Google Scholar
  15. Read, S. (2002). The liar paradox from John Buridan back to Thomas Bradwardine. Vivarium, 40(2), 189–218.CrossRefGoogle Scholar
  16. Read, S. (2006). Symmetry and paradox. History and Philosophy of Logic, 27(4), 307–318.CrossRefGoogle Scholar
  17. Read, S. (2009). Plural signification and the liar paradox. Philosophical Studies, 145(3), 363–375.CrossRefGoogle Scholar
  18. Read, S. (2010b). Field’s paradox and its medieval solution. History and Philosophy of Logic, 31(2), 18–28.CrossRefGoogle Scholar
  19. Read, S. (2016). Paradoxes of signification. Vivarium, 54(4), 335–355.CrossRefGoogle Scholar
  20. Rommevaux, S. (2010). Magnetism and Bradwardine’s rule of motion in fourteenth and fifteenth century treatises. Early Science and Medicine, 15(6), 618–647.CrossRefGoogle Scholar
  21. Rommevaux, S. (2013). A treatise on proportion in the Traditio of Thomas Bradwardine: The de Proportionibus Libri duo (1528) of Jean Fernel. Historia Mathematica, 40(2), 164–182. Spade, P. V. (1988). Insolubilia and Bradwardine’s theory of signification in his lies, language and logic in the late middle ages (pp. 115–134). London: Variorum.Google Scholar
  22. Sylla, E. D. (2007). The origin and fate of Thomas Bradwardine’s de proportionibus velocitatum in motibus in relation to the history of mathematics. In W. R. Laird & S. Roux (Eds.), Mechanics and natural philosophy before the scientific revolution (pp. 67–119). Dordrecht: Springer.CrossRefGoogle Scholar
  23. Tachau, K. (1988). Vision and certitude in the age of Ockham: Optics, epistemology and the foundation of semantics. Leiden: Brill.Google Scholar
  24. Takahashi, K. (1984). The mathematical foundations of Bradwardine’s rule. Historia Scientiarum, 26, 19–38.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2018

Authors and Affiliations

  1. 1.Department of Classics and Religious StudiesUniversity of NebraskaLincolnUSA