Skip to main content

AFM, Noncontact Mode

  • Reference work entry
  • First Online:
Encyclopedia of Nanotechnology
  • 34 Accesses

Definition

The noncontact atomic force microscopy (NC-AFM) is a specific AFM technique primarily developed for application in vacuum where standard AFM cantilevers made from silicon or silicon nitride exhibit very high quality factors Q, what makes the response of the system slow if driven in AM or tapping mode (AFM, Tapping Mode). The technique to oscillate the cantilever also in high Q environments is called frequency-modulation (FM) mode. In contrast to the tapping or AM mode typically applied in air or liquids, this approach features a so-called self-driven oscillator, which uses the cantilever deflection itself as drive signal, thus ensuring that the cantilever instantaneously adapts to changes in the resonance frequency. The NC-AFM technique is the method of choice to obtain true atomic resolution on non-conduction surfaces with an atomic force microscope.

Overview

To obtain high resolution images with an atomic force microscope it is most important to prepare clean sample...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albrecht, T.R., Grütter, P., Horne, D., Rugar, D.: Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 69, 668 (1991)

    Article  Google Scholar 

  2. Morita, S., Wiesendanger, R., Meyer, E. (eds.): Noncontact Atomic Force Microscopy. Springer, Berlin (2002)

    Google Scholar 

  3. Garcia, R., Pérez, R.: Dynamic atomic force microscopy methods. Surf. Sci. Rep. 47, 197 (2002)

    Article  Google Scholar 

  4. Giessibl, F.-J.: Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949 (2003)

    Article  Google Scholar 

  5. Meyer, E., Hug, H.J., Bennewitz, R.: Scanning Probe Microscopy – The Lab on a Tip. Springer, Berlin (2004)

    Book  Google Scholar 

  6. Morita, S., Giessibl, F.J., Wiesendanger, R. (eds.): Noncontact Atomic Force Microscopy, vol. 2. Springer, Berlin (2009)

    Google Scholar 

  7. Ueyama, H., Sugawara, Y., Morita, S.: Stable operation mode for dynamic noncontact atomic force microscopy. Appl. Phys. A 66, S295 (1998)

    Article  Google Scholar 

  8. Hölscher, H., Gotsmann, B., Allers, W., Schwarz, U.D., Fuchs, H., Wiesendanger, R.: Comment on “Damping mechanism in dynamic force microscopy”. Phys. Rev. Lett. 88, 019601 (2002)

    Article  Google Scholar 

  9. Hölscher, H., Schwarz, A., Allers, W., Schwarz, U.D., Wiesendanger, R.: Quantitative analysis of dynamic force spectroscopy data on graphite(0001) in the contact and non-contact regime. Phys. Rev. B 61, 12678 (2000)

    Article  Google Scholar 

  10. Giessibl, F.J.: Forces and frequency shifts in atomic-resolution dynamic-force microscopy. Phys. Rev. B 56, 16010 (1997)

    Article  Google Scholar 

  11. Dürig, U.: Relations between interaction force and frequency shift in large-amplitude dynamic force microscopy. Appl. Phys. Lett. 75, 433 (1999)

    Article  Google Scholar 

  12. Baykara, M.Z., Schwendemann, T.C., Altman, E.I., Schwarz, U.D.: Three-dimensional atomic force microscopy taking surface imaging to the next level. Adv. Mater. 22, 2838 (2010)

    Article  Google Scholar 

  13. Giessibl, F.-J.: Atomic resolution of the silicon (111)-(7 × 7) surface by atomic force microscopy. Science 267, 68 (1995)

    Article  Google Scholar 

  14. Sugawara, Y., Otha, M., Ueyama, H., Morita, S.: Defect motion on an InP(110) surface observed with noncontact atomic force microscopy. Science 270, 1646 (1995)

    Article  Google Scholar 

  15. Barth, C., Reichling, M.: Imaging the atomic arrangement on the high-temperature reconstructed α-Al2O3(0001) surface. Nature 414, 54 (2001)

    Article  Google Scholar 

  16. Allers, W., Langkat, S., Wiesendanger, R.: Dynamic low-temperature scanning force microscopy on nickel oxide (001). Appl. Phys. A 72, S27 (2001)

    Article  Google Scholar 

  17. Hölscher, H., Langkat, S.M., Schwarz, A., Wiesendanger, R.: Measurement of threedimensional force fields with atomic resolution using dynamic force spectroscopy. Appl. Phys. Lett. 81, 4428 (2002)

    Article  Google Scholar 

  18. Loppacher, C., Guggisberg, M., Pfeiffer, O., Meyer, E., Bammerlin, M., Luthi, R., Schlittler, R., Gimzewski, J.K., Tang, H., Joachim, C.: Direct determination of the energy required to operate a single molecule switch. Phys. Rev. Lett. 90, 066107 (2003)

    Article  Google Scholar 

  19. Sugimoto, Y., Abe, M., Hirayama, S., Oyabu, N., Custance, O., Morita, S.: Atom inlays performed at room temperature using atomic force microscopy. Nat. Mater. 4, 156 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Hölscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Hölscher, H. (2016). AFM, Noncontact Mode. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9780-1_32

Download citation

Publish with us

Policies and ethics