Skip to main content

Active Plasmonic Devices

  • Reference work entry
  • First Online:
Encyclopedia of Nanotechnology

Synonyms

Active nanoantenna system

Definition

Active plasmonic devices combine plasmonic systems and a physical or chemical control input.

Main Text

Published papers using the term “active plasmonics” and citations of those papers are shown in Fig. 1a, b. The first papers explicitly devoted to this new field were published in 2004 and 2005, even though many previous publications had already pointed out the need for such devices. The growth of these two curves clearly demonstrates that breakthroughs have been achieved in the last 5 years and that many new devices will briefly be demonstrated.

Active Plasmonic Devices, Fig. 1
figure 151 figure 151

Histogram of (a) published papers and (b) number of citations of papers including terms “active plasmonics”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brongersma, M.L., Kik, P.G.: Surface Plasmon Nanophotonics. Springer, New York (2007)

    Book  Google Scholar 

  2. Baia, M., Astilean, S., Iliescu, T.: New developments in SERS-active substrates. In: Baia, M., Astilean, S., Iliescu, T. (eds.) Raman and SERS Investigations of Pharmaceuticals, pp. 187–205. Springer, Berlin (2008)

    Chapter  Google Scholar 

  3. Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  Google Scholar 

  4. Jain, P.K., Huang, X., El-Sayed, I.H., El-Sayed, M.A.: Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41, 1578–1586 (2008)

    Article  Google Scholar 

  5. MacDonald, K.F., Zheludev, N.I.: Active plasmonics: current status. Laser Photonics Rev. 4, 562–567 (2010)

    Article  Google Scholar 

  6. Karg, M., Pastoriza-Santos, I., Perez-Juste, J., Hellweg, T., Liz-Marzan, L.M.: Nanorod-coated PNIPAM microgels: thermoresponsive optical properties. Small 3, 1222–1229 (2007)

    Article  Google Scholar 

  7. Ikeda, T.: Photomodulation of liquid crystal orientations for photonic applications. J. Mater. Chem. 13, 2037–2057 (2003)

    Article  Google Scholar 

  8. Malynych, S., Chumanov, G.: J. Am. Chem. Soc. 125(10), 2896–2898 (2003)

    Article  Google Scholar 

  9. Homola, J.: Surface Plasmon Resonance Based Sensors. Springer, Berlin (2006)

    Book  Google Scholar 

  10. Zheng, Y.B., Yang, Y.W., Jensen, L., Fang, L., Juluri, B.K., Flood, A.H., Weiss, P.S., Stoddart, J.F., Huang, T.J.: Active molecular plasmonics: controlling plasmon resonances with molecular switches. Nano Lett. 9, 819–825 (2009)

    Article  Google Scholar 

  11. Haes, A.J., Zou, S., Zhao, J., Schatz, G.C., Van Duyne, R.P.: Localized surface plasmon resonance spectroscopy near molecular resonances. J. Am. Chem. Soc. 128, 10905–10914 (2006)

    Article  Google Scholar 

  12. Negre, C.F.A., Sánchez, C.G.: Effect of molecular adsorbates on the plasmon resonance of metallic nanoparticles. Chem. Phys. Lett. 494, 255–259 (2010)

    Article  Google Scholar 

  13. Zhao, J., Das, A., Schatz, G.C., Sligar, S.G., Van Duyne, R.P.: Resonance localized surface plasmon spectroscopy: sensing substrate and inhibitor binding to cytochrome P450. J. Phys. Chem. C 112, 13084–13088 (2008)

    Article  Google Scholar 

  14. Ung, T., Giersig, M., Dunstan, D., Mulvaney, P.: Spectroelectrochemistry of colloidal silver. Langmuir 13, 1773–1782 (1997)

    Article  Google Scholar 

  15. Wang, Z.C., Chumanov, G.: WO3 sol-gel modified Ag nanoparticle arrays for electrochemical modulation of surface plasmon resonance. Adv. Mater. 15, 1285–1289 (2003)

    Article  Google Scholar 

  16. Leroux, Y.R., Lacroix, J.C., Chane-Ching, K.I., Fave, C., Felidj, N., Levi, G., Aubard, J., Krenn, J.R., Hohenau, A.: Conducting polymer electrochemical switching as an easy means for designing active plasmonic devices. J. Am. Chem. Soc. 127, 16022–16023 (2005)

    Article  Google Scholar 

  17. Leroux, Y., et al.: ACS Nano 2(4), 728–732 (2008)

    Google Scholar 

  18. Stockhausen, V., Martin, P., Ghilane, J., Leroux, Y., Randriamahazaka, H., Grand, J., Felidj, N., Lacroix, J.C.: Giant plasmon resonance shift using poly (3,4-ethylenedioxythiophene) electrochemical switching. J. Am. Chem. Soc. 132, 10224–10226 (2010)

    Article  Google Scholar 

  19. Sidhaye, D.S., Kashyap, S., Sastry, M., Hotha, S., Prasad, B.L.V.: Gold nanoparticle networks with photoresponsive interparticle spacings. Langmuir 21, 7979–7984 (2005)

    Article  Google Scholar 

  20. Du, G.X., Mori, T., Saito, S., Takahashi, M.: Shape-enhanced magneto-optical activity: degree of freedom for active plasmonics. Phys. Rev. B Condens. Matter 82, 4 (2010)

    Google Scholar 

  21. Krasavin, A.V., Zheludev, N.I.: Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations. Appl. Phys. Lett. 84(8), 1416–1418 (2004)

    Article  Google Scholar 

  22. Nikolajsen, T., Leosson, K., Bozhevolnyi, S.I.: Surface plasmon polariton based modulators and switches operating at telecom wavelengths. Appl. Phys. Lett. 85, 2 (2004)

    Article  Google Scholar 

  23. Dionne, J.A., Diest, K., Sweatlock, L.A., Atwater, H.A.: PlasMOStor: a metal-oxide-Si field effect plasmonic modulator. Nano Lett. 9, 897–902 (2009)

    Article  Google Scholar 

  24. MacDonald, K.F., Samson, Z.L., Stockman, M.I., Zheludev, N.I.: Ultrafast active plasmonics. Nat. Photonics 3, 55–58 (2009)

    Article  Google Scholar 

  25. Chau, K.J., Irvine, S.E., Elezzabi, A.Y.: A gigahertz surface magneto-plasmon optical modulator. IEEE J. Quantum Electron. 40, 571–579 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Christophe Lacroix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Lacroix, J.C., Martin, P., Randriamahazaka, H. (2016). Active Plasmonic Devices. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9780-1_24

Download citation

Publish with us

Policies and ethics