Skip to main content

AC Dielectrophoresis and Dipolar Interactions for Particle Manipulation

  • Reference work entry
  • First Online:
Encyclopedia of Nanotechnology
  • 161 Accesses

Synonyms

Dielectrophoretic phenomena; Dipolar particle chaining; Dipole–dipole particle interaction; Field-driven particle assembly; Suspension interaction with external AC field gradient

Definition

The total force exerted on a polarizable particle by a spatially nonuniform electrical field is the sum of the electrophoretic force (product of the net particle charge and the field strength) and the dielectrophoretic force (product of the particle dipole moment and the field strength gradient). Electrophoretic force effects vanish in an alternating current (AC) field of a sufficiently high frequency due to the zero time average over the field oscillations. In contrast, dielectrophoretic force operates in AC fields as its averaging yields a nonzero value whose magnitude is the product of the particle volume, the gradient of the time-average squared field strength, and the relative particle polarization at the field frequency. Depending on whether the particle is more or less polarizable...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pohl, H.A.: Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields. Cambridge University Press, Cambridge (1978)

    Google Scholar 

  2. Pethig, R.: Review article-dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4, 022811 (2010)

    Article  Google Scholar 

  3. Sheng, P., Wen, W.: Electrorheological fluids: mechanisms, dynamics, and microfluidics applications. Ann. Rev. Fluid Mech. 44, 143–174 (2012)

    Article  Google Scholar 

  4. Nili, H., Green, N.G.: Higher-order dielectrophoresis of nonspherical particles. Phys. Rev. E 89, 063302 (2014)

    Article  Google Scholar 

  5. Russel, W.B., Saville, D.A., Schowalter, W.R.: Colloidal Dispersions. Cambridge University Press, Cambridge (1989)

    Book  Google Scholar 

  6. Jones, T.B.: Electromechanics of Particles. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  7. Kumar, A., Qiu, Z., Acrivos, A., Khusid, B., Jacqmin, D.: Combined negative dielectrophoresis and phase separation in nondilute suspensions subject to a high-gradient ac electric field. Phys. Rev. E 69, 021402 (2004)

    Article  Google Scholar 

  8. Khusid, B., Acrivos, A.: Effects of conductivity in electric-field-induced aggregation in electrorheological fluids. Phys. Rev. E 52, 1669–1693 (1995)

    Article  Google Scholar 

  9. Chen, T.-J., Zitter, R.N., Tao, R.: Laser diffraction determination of the crystalline structure of an electrorheological fluid. Phys. Rev. Lett. 68, 2555–2558 (1992)

    Article  Google Scholar 

  10. Dassanayake, U., Fraden, S., van Blaaderen, A.: Structure of electrorheological fluids. J. Chem. Phys. 112, 3851–3858 (2000)

    Article  Google Scholar 

  11. Dobnikar, J., Snezhko, A., Yethiraj, A.: Emergent colloidal dynamics in electromagnetic fields. Soft Matter 9, 3693–3704 (2013)

    Article  Google Scholar 

  12. van Blaaderen, A., Dijkstra, M., van Roij, R., Imhof, A., Kamp, M., Kwaadgras, B.W., Vissers, T., Liu, B.: Manipulating the self assembly of colloids in electric fields. Eur. Phys. J. Spec. Top. 222, 2895–2909 (2013)

    Article  Google Scholar 

  13. Khusid, B., Acrivos, A.: Effects of interparticle electric interactions on dielectrophoresis in colloidal suspensions. Phys. Rev. E 54, 5428–5435 (1996)

    Article  Google Scholar 

  14. Wood, J.A., Docoslis, A.: Electric-field induced phase transitions of dielectric colloids: impact of multiparticle effects. J. Appl. Phys. 111, 094106 (2012)

    Article  Google Scholar 

  15. Moncada-Hernandez, H., Nagler, E., Minerick, A.R.: Theoretical and experimental examination of particle–particle interaction effects on induced dipole moments and dielectrophoretic responses of multiple particle chains. Electrophoresis 35, 1803–1813 (2014)

    Article  Google Scholar 

  16. Velev, O.D., Gangwala, S., Petsev, D.N.: Particle-localized AC and DC manipulation and electrokinetics. Ann. Rep. Prog. Chem. Sect. C 105, 213–246 (2009)

    Article  Google Scholar 

  17. Sullivan, M., Zhao, K., Harrison, C., Austin, R.H., Megens, M., Hollingsworth, A.D., Russel, W.B., Cheng, Z., Mason, T., Chaikin, P.M.: Control of colloids with gravity, temperature gradients, and electric fields. J. Phys. Condens. Matter 15, S11–S18 (2003)

    Article  Google Scholar 

  18. Kumar, A., Acrivos, A., Khusid, B., James, C.D., Jacqmin, D.: Conveyor-belt method for assembling microparticles into large-scale structures using electric fields. Appl. Phys. Lett. 90, 154104 (2007)

    Article  Google Scholar 

  19. Bennett, D., Khusid, B., Galambos, P.C., James, C.D., Okandan, M., Jacqmin, D., Acrivos, A.: Combined field-induced dielectrophoresis and phase separation for manipulating particles in microfluidics. Appl. Phys. Lett. 83, 4866–4868 (2003)

    Article  Google Scholar 

  20. Camarda, M., Fisicaro, G., Anzalone, R., Scalese, S., Alberti, A., La Via, F., La Magna, A., Ballo, A., Giustolisi, G., Minafra, L., Cammarata, F.P., Bravatà, V., Forte, G.I., Russo, G., Gilardi, M.G.: Theoretical and experimental study of the role of cell-cell dipole interaction in dielectrophoretic devices: application to polynomial electrodes. Biomed. Eng. 13, 71 (2014). Online

    Google Scholar 

  21. Kadaksham, J., Singh, P., Aubry, N.: Dielectrophoresis induced clustering regimes of viable yeast cells. Electrophoresis 26, 3738–3744 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Khusid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Khusid, B. (2016). AC Dielectrophoresis and Dipolar Interactions for Particle Manipulation. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9780-1_101013

Download citation

Publish with us

Policies and ethics