Australian Snakebite and Treatment

  • James Tibballs
Reference work entry
Part of the Toxinology book series (TOXI)


Life-supporting treatment may be required after envenomation by species of Australian snakes from terrestrial genera: Pseudonaja (Brown snakes), Notechis (Tiger snakes), Oxyuranus (Taipans), Acanthophis (Death Adders), Pseudechis (Black snakes), Austrelaps (Copperhead snakes), Hoplocephalus and by the species Tropidechis carinatus (Rough-scaled snake), Paroplocephalus atriceps (Lake Cronin snake), and most of the genera of sea snakes including Hydrophis, Aipysurus, Laticauda, and Microcephalophis. Envenomation causes paralysis, procoagulant coagulopathy or anticoagulant coagulopathy (both causing hemorrhage), and rhabdomyolysis with renal failure. Procoagulant coagulopathy may also cause acute cardiovascular collapse and microangiopathic hemolytic anemia. Lesser known species cause nonlife-threatening illness. Early administration of antivenom can neutralize toxins and halt but not reverse procoagulopathy and establish tissue damage such as destroyed nerve terminals and rhabdomyolysis, which mandate time and supportive medical therapy. The recommended antivenom dose for an envenomated snakebite victim is two vials but less or more may be required, preceded by low-dose subcutaneous adrenaline to prevent allergic reactions. The few toxins identified and purified include: presynaptic phospholipase A2 neurotoxins taipoxin (Taipan), notexin (Tiger snake), textilotoxin (Brown snake); serine proteinase prothrombin activators in Taipan, Tiger snake, Brown snake, Rough-scaled snake, and Stephen’s Banded snake venoms; blockers of cyclic nucleotide-gated ion channels (pseudechetoxin, pseudecin) in Black snake venom and a plasmin inhibitor in Brown snake venom.


Envenomation Envenoming Toxin Snake Snakebite Antivenom 


  1. Allen GE, Brown SG, Buckley NA, et al. Clinical effects and antivenom dosing in brown snake (Pseudonaja spp.) envenoming – Australian Snakebite Project (ASP-14). PLoS One. 2012;7:e53188.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Allen GE, Wilson SK, Isbister GK. Paroplocephalus envenoming: a previously unrecognized highly venomous snake in Australia. Med J Aust. 2013;199:792–3.PubMedCrossRefGoogle Scholar
  3. Barber CM, Isbister GK, Hodgson WC. Solving the ‘Brown snake paradox’: in vitro characterisation of Australasian snake presynaptic neurotoxin activity. Toxicol Lett. 2012;210:318–23.PubMedCrossRefGoogle Scholar
  4. Barber CM, Madaras F, Turnbull RK, et al. Comparative studies of the venom of a new Taipan species, Oxyuranus temporalis, with other members of its genus. Toxins. 2014;6:1979–95.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Berling I, Brown SG, Miteff F, Levi C, Isbister GK. Intracranial haemorrhage associated with venom induced consumption coagulopathy in Australian snakebites (ASP-21). Toxicon. 2015;102:8–13.PubMedCrossRefGoogle Scholar
  6. Birrell GW, Earl S, Masci PP, et al. Molecular diversity in venom from the Australian brown snake, Pseudonaja textilis. Mol Cell Proteomics. 2006;5:379–89.PubMedCrossRefGoogle Scholar
  7. Blacklow B, Escoubas P, Nicholson GM. Characterisation of the heterotrimeric presynaptic phospholipase A(2) neurotoxin complex from the venom of the common death adder (Acanthophis antarcticus). Biochem Pharmacol. 2010a;80:277–87.PubMedCrossRefGoogle Scholar
  8. Blacklow B, Konstantakopoulos N, Hodgson WC, Nicholson GM. Presence of presynaptic neurotoxin complexes in the venoms of Australo-Papuan death adders (Acanthophis spp.). Toxicon. 2010b;55:1171–80.PubMedCrossRefGoogle Scholar
  9. Brown RL, Haley TL, West KA, Crabb JW. Pseudechetoxin: a peptide blocker of cyclic nucleotide-gated ion channels. Proc Natl Acad Sci U S A. 1999;96:754–9.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Brown RL, Lynch LL, Haley TL, Arsanjani R. Pseudechetoxin binds to the pore turret of cyclic nucleotide gated ion channels. J Gen Physiol. 2003;122:749–60.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Cendron L, Micetic I, Polverino de Laureto P, Paoli M. Structural analysis of trimeric phospholipase A2 neurotoxin from the Australian taipan snake venom. FEBS J. 2012;279:3121–35.PubMedCrossRefGoogle Scholar
  12. Chaisakul J, Isbister GK, Konstantakopoulos N, Tare M, Parkington HC, Hodgson WC. In vivo and in vitro cardiovascular effects of Papuan taipan (Oxyuranus scutellatus) venom: exploring “sudden collapse”. Toxicol Lett. 2012;213:243–8.PubMedCrossRefGoogle Scholar
  13. Chaisakul J, Isbister GK, Kuruppu S, Konstantakopoulos N, Hodgson WC. An examination of cardiovascular collapse induced by eastern brown snake (Pseudonaja textilis) venom. Toxicol Lett. 2013;221:205–11.PubMedCrossRefGoogle Scholar
  14. Chaisakul J, Isbister GK, Tare M, Parkington HC, Hodgson WC. Hypotensive and vascular relaxant effects of phospholipase A2 toxins from Papuan taipan (Oxyuranus scutellatus) venom. Eur J Pharmacol. 2014;723:227–33.PubMedCrossRefGoogle Scholar
  15. Chaisakul J, Isbister GK, O’Leary MA, et al. Prothrombin activator-like toxin appears to mediate cardiovascular collapse following envenoming by Pseudonaja textilis. Toxicon. 2015;102:48–54.PubMedCrossRefGoogle Scholar
  16. Chippaux JP. Epidemiology of snakebites in Europe: a systematic review of the literature. Toxicon. 2012;59:86–99.PubMedCrossRefGoogle Scholar
  17. Dassanayake AS, Karunanayake P, Kasturiratne KT, et al. Safety of subcutaneous adrenaline as prophylaxis against acute adverse reactions to anti-venom serum in snakebite. Ceylon Med J. 2002;47:48–9.PubMedCrossRefGoogle Scholar
  18. de Silva HA, Pathmeswaran A, Ranasinha CD, et al. Low-dose adrenaline, promethazine, and hydrocortisone in the prevention of acute adverse reactions to antivenom following snakebite: a randomised, double-blind, placebo-controlled trial. PLoS Med. 2011;8:e1000435.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Dixon RW, Harris JB. Myotoxic activity of the toxic phospholipase, notexin, from the venom of the Australian tiger snake. J Neuropathol Exp Neurol. 1996;55:1230–7.PubMedCrossRefGoogle Scholar
  20. Doorty KB, Bevan S, Wadsworth JD, Strong PN. A novel small conductance Ca2+-activated K+ channel blocker from Oxyuranus scutellatus taipan venom. Re-evaluation of taicatoxin as a selective Ca2+ channel probe. J Biol Chem. 1997;272:19925–30.PubMedCrossRefGoogle Scholar
  21. Earl ST, Masci PP, de Jersey J, Lavin MF, Dixon J. Drug development from Australian elapid snake venoms and the Venomics pipeline of candidates for haemostasis: textilinin-1 (Q8008), HaempatchTM (Q8009) and CoVaseTM (V0801). Toxicon. 2012;59:456–63.PubMedCrossRefGoogle Scholar
  22. Fan HW, Marcopito LF, Cardoso JL, et al. A sequential randomised and double blind trial of promethazine prophylaxis against early anaphylactic reactions to antivenom for Bothrops snake bites. BMJ. 1999;318:1451–3.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Fantini E, Athias P, Tirosh R, Pinson A. Effect of TaiCatoxin (TCX) on the electrophysiological, mechanical and biochemical characteristics of spontaneously beating ventricular cardiomyocytes. Mol Cell Biochem. 1996;160–161:61–6.PubMedCrossRefGoogle Scholar
  24. Fry BG, Wickramaratana JC, Lemme S, et al. Novel natriuretic peptides from the venom of the inland taipan (Oxyuranus microlepidotus): isolation, chemical and biological characterisation. Biochem Biophys Res Commun. 2005;327:1011–5.PubMedCrossRefGoogle Scholar
  25. Gan M, O’Leary MA, Brown SG, et al. Envenoming by the rough-scaled snake (Tropidechis carinatus): a series of confirmed cases. Med J Aust. 2009;191:183–6.PubMedGoogle Scholar
  26. Han SX, Kwong S, Ge R, et al. Regulation of expression of venom toxins: silencing of prothrombin activator trocarin D by AG-rich motifs. FASEB J. 2016;30:2411–25.PubMedCrossRefGoogle Scholar
  27. Harris JB, Maltin CA. Myotoxic activity of the crude venom and the principal neurotoxin, taipoxin, of the Australian taipan, Oxyuranus scutellatus. Br J Pharmacol. 1982;76:61–75.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Harris JB, Grubb BD, Maltin CA, Dixon R. The neurotoxicity of the venom phospholipases A(2), notexin and taipoxin. Exp Neurol. 2000;161:517–26.PubMedCrossRefGoogle Scholar
  29. Harrison JA, Aquilina JA. Insights into the subunit arrangement and diversity of paradoxin and taipoxin. Toxicon. 2016;112:45–50.PubMedCrossRefGoogle Scholar
  30. Hart AJ, Hodgson WC, O’Leary M, Isbister GK. Pharmacokinetics and pharmacodynamics of the myotoxic venom of Pseudechis australis (mulga snake) in the anaesthetised rat. Clin Toxicol. 2014;52:604–10.CrossRefGoogle Scholar
  31. Herrera M, de Cassia de O Collaco R, Villalta M, et al. Neutralization of the neuromuscular inhibition of venom and taipoxin from the taipan (Oxyuranus scutellatus) by F(ab′)2 and whole IgG antivenoms. Toxicol Lett. 2016;241:175–83.PubMedCrossRefGoogle Scholar
  32. Hession M. Stephen’s Banded snake envenomation treated with tiger snake antivenom. Emerg Med Australas. 2007;19:476–8.PubMedCrossRefGoogle Scholar
  33. Ho WK, Verner E, Dauer R, Duggan J. ADAMTS-13 activity, microangiopathic haemolytic anaemia and thrombocytopenia following snake bite envenomation. Pathology. 2010;42(2):200.PubMedCrossRefGoogle Scholar
  34. Hodgson WC, Wickramaratna JC. In vitro neuromuscular activity of snake venoms. Clin Exp Pharmacol Physiol. 2002;29:807–14.PubMedCrossRefGoogle Scholar
  35. Hodgson WC, Eriksson CO, Alewood PF, Fry BG. Comparison of the in vitro activity of venom from three Australian snakes (Hoplocephalus stephensi, Austrelaps superbus and Notechis scutatus): efficacy of tiger snake antivenom. Clin Exp Pharmacol Physiol. 2003;30:127–32.PubMedCrossRefGoogle Scholar
  36. Hodgson WC, Dal Belo CA, Rowan EG. The neuromuscular activity of paradoxin: a presynaptic neurotoxin from the venom of the inland taipan (Oxyuranus microlepidotus). Neuropharmacology. 2007;52:1229–36.PubMedCrossRefGoogle Scholar
  37. Howarth DM, Southee AE, Whyte IM. Lymphatic flow rates and first-aid in simulated peripheral snake or spider envenomation. Med J Aust. 1994;161:695–700.PubMedGoogle Scholar
  38. Ireland G, Brown SG, Buckley NA, et al. Changes in serial laboratory test results in snakebite patients: when can we safely exclude envenoming? Med J Aust. 2010;193:285–90.PubMedGoogle Scholar
  39. Isbister GK, Brown SG. Bites in Australian snake handlers – Australian Snakebite Project. QJM. 2012;105:1089–95.PubMedCrossRefGoogle Scholar
  40. Isbister GK, Little M, Cull G, et al. Thrombotic microangiopathy from Australian brown snake (Pseudonaja) envenoming. Intern Med J. 2007a;37:523–8.PubMedCrossRefGoogle Scholar
  41. Isbister GK, O’Leary M, Schneider JJ, Brown SG, Currie BJ. Efficacy of antivenom against the procoagulant effect of Australian brown snake (Pseudonaja sp.) venom: in vivo and in vitro studies. Toxicon. 2007b;49:57–67.PubMedCrossRefGoogle Scholar
  42. Isbister GK, Brown SG, MacDonald E, et al. Current use of Australian snake antivenoms and frequency of immediate-type hypersensitivity reactions and anaphylaxis. Med J Aust. 2008;188:473–6.PubMedGoogle Scholar
  43. Isbister GK, Brown SG, Page CB, McCoubrie DL, Greene SL, Buckley NA. Snakebite in Australia: a practical approach to diagnosis and treatment. Med J Aust. 2013a;199:763–8.PubMedCrossRefGoogle Scholar
  44. Isbister GK, Buckley NA, Page CB, et al. A randomised controlled trial of fresh frozen plasma for treating venom-induced consumption coagulopathy in cases of Australian snakebite (ASP-18). J Thromb Haemost. 2013b;11:1310–8.PubMedCrossRefGoogle Scholar
  45. Johnston CI, O’Leary MA, Brown SG, et al. Death adder envenoming causes neurotoxicity not reversed by antivenom – Australian Snakebite Project (ASP-16). PLoS Negl Trop Dis. 2012;6:e1841.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Johnston CI, Brown SG, O’Leary MA, et al. Mulga snake (Pseudechis australis) envenoming: a spectrum of myotoxicity, anticoagulant coagulopathy, haemolysis and the role of early antivenom therapy – Australian Snakebite Project (ASP-19). Clin Toxicol. 2013;51:417–24.CrossRefGoogle Scholar
  47. Johnston CI, Ryan NM, Page CB, et al. The Australian Snakebite Project, 2005–2015 (ASP-20). Med J Aust. 2017;207:119–25.PubMedCrossRefGoogle Scholar
  48. Joseph JS, Chung MC, Jeyaseelan K, Kini RM. Amino acid sequence of trocarin, a prothrombin activator from Tropidechis carinatus venom: its structural similarity to coagulation factor Xa. Blood. 1999;94:621–31.PubMedGoogle Scholar
  49. Judge RK, Henry PJ, Mirtschin P, Jelinek G, Wilce J. Toxins not neutralized by brown snake antivenom. Toxicol Appl Pharmacol. 2006;213:117–25.PubMedCrossRefGoogle Scholar
  50. Keogh JS, Scott IAW, Hayes C. Rapid and repeated origin of insular gigantism and dwarfism in Australian tiger snakes. Evolution. 2005;59:226–33.PubMedCrossRefGoogle Scholar
  51. Kini RM. The intriguing world of prothrombin activators from snake venom. Toxicon. 2005;45:1133–45.PubMedCrossRefGoogle Scholar
  52. Kini RM, Koh CY. Metalloproteases affecting blood coagulation, fibrinolysis and platelet aggregation from snake venoms: definition and nomenclature of interaction sites. Toxins. 2016;8:1–27.CrossRefGoogle Scholar
  53. Kuruppu S, Fry BG, Hodgson WC. Presynaptic neuromuscular activity of venom from the brown-headed snake (Glyphodon tristis). Toxicon. 2005;45:383–8.PubMedCrossRefGoogle Scholar
  54. Kuruppu S, Chaisakul J, Smith AI, Hodgson WC. Inhibition of presynaptic neurotoxins in taipan venom by suramin. Neurotox Res. 2014;25:305–10.PubMedCrossRefGoogle Scholar
  55. Lalloo DG, Trevett AJ, Nwokolo N, et al. Electrocardiographic abnormalities in patients bitten by taipans (Oxyuranus scutellatus canni) and other elapid snakes in Papua New Guinea. Trans R Soc Trop Med Hyg. 1997;91:53–6.PubMedCrossRefGoogle Scholar
  56. Lind P, Eaker D. Amino acid sequence of the alpha-subunit of taipoxin, an extremely potent presynaptic neurotoxin from the Australian snake taipan (Oxyuranus s. scutellatus). Eur J Biochem. 1982;124:441–7.PubMedCrossRefGoogle Scholar
  57. Lipps BV. Isolation of subunits, alpha, beta and gamma of the complex taipoxin from the venom of Australian taipan snake (Oxyuranus s. scutellatus): characterization of beta taipoxin as a potent mitogen. Toxicon. 2000;38:1845–54.PubMedCrossRefGoogle Scholar
  58. Marcon F, Leblanc M, Vetter I, Lewis RJ, Escoubas P, Nicholson GM. Pharmacological characterization of alpha-elapotoxin-Al2a from the venom of the Australian pygmy copperhead (Austrelaps labialis): an atypical long-chain alpha-neurotoxin with only weak affinity for α7 nicotinic receptors. Biochem Pharmacol. 2012;84:851–63.PubMedCrossRefGoogle Scholar
  59. Marcon F, Purtell L, Santos J, et al. Characterisation of monomeric and multimeric snake neurotoxins and other bioactive proteins from the venom of the lethal Australian common copperhead (Austrelaps superbus). Biochem Pharmacol. 2013;85:1555–73.PubMedCrossRefGoogle Scholar
  60. Marsh NA, Fyffe TL, Bennett EA. Isolation and partial characterization of a prothrombin-activating enzyme from the venom of the Australian rough-scaled snake (Tropidechis carinatus). Toxicon. 1997;35:563–71.PubMedCrossRefGoogle Scholar
  61. Marshall LR, Herrmann RP. Australian snake venoms and their effects in vitro on human platelets. Thromb Res. 1989;54:269–75.PubMedCrossRefGoogle Scholar
  62. Masci PP, Whitaker AN, de Jersey J. Purification and characterization of a prothrombin activator from the venom of the Australian brown snake, Pseudonaja textilis textilis. Biochem Int. 1988;17:825–35.PubMedGoogle Scholar
  63. McGain F, Limbo A, Williams DJ, Didel G, Winkel KD. Snakebite mortality at Port Moresby General Hospital, Papua New Guinea. Med J Aust. 2004;181:687–91.PubMedGoogle Scholar
  64. Millers EK, Trabi M, Masci PP, Lavin MF, de Jersey J, Guddat LW. Crystal structure of textilinin-1, a Kunitz-type serine protease inhibitor from the venom of the Australian common brown snake (Pseudonaja textilis). FEBS J. 2009;276:3163–75.PubMedCrossRefGoogle Scholar
  65. Mirtschin PJ, Dunstan N, Hough B, et al. Venom yields from Australian and some other species of snakes. Ecotoxicology. 2006;15:531–8.PubMedCrossRefGoogle Scholar
  66. Mirtschin P, Rasmussen AR, Weinstein SA. Australia’s dangerous snakes. Identification, biology and envenoming. Clayton: CSIRO Publishing; 2017.Google Scholar
  67. Montecucco C, Rossetto O. On the quaternary structure of taipoxin and textilotoxin: the advantage of being multiple. Toxicon. 2008;51:1560–2.PubMedCrossRefGoogle Scholar
  68. Morrison JJ, Pearn JH, Coulter AR. The mass of venom injected by two elapidae: the taipan (Oxyuranus scutellatus) and the Australian tiger snake (Notechis scutatus). Toxicon. 1982;20:739–45.PubMedCrossRefGoogle Scholar
  69. Morrison JJ, Pearn JH, Coulter AR, Tanner C, Charles NT. The quantity of venom injected by elapid snakes. Toxicon. 1983;21(Suppl 3):309–12.CrossRefGoogle Scholar
  70. Morrison JJ, Masci PP, Bennett EA, et al. Studies of the venom and clinical features of the Australian rough-scaled snake (Tropidechis carinatus). In: Gopalakrishnakone P, Tan CK, editors. Progress in venom and toxin research. Singapore: National University of Singapore; 1987. p. 220–33.Google Scholar
  71. Murakami M, Taketomi Y, Miki Y, Sato H, Hirabayashi T, Yamamoto K. Recent progress in phospholipase A2 research: from cells to animals to humans. Prog Lipid Res. 2011;50:152–92.PubMedCrossRefGoogle Scholar
  72. Nakagaki T, Lin P, Kisiel W. Activation of human factor VII by the prothrombin activator from the venom of Oxyuranus scutellatus (taipan snake). Thromb Res. 1992;65:105–16.PubMedCrossRefGoogle Scholar
  73. Navarro D, Vargas M, Herrera M, et al. Development of a chicken-derived antivenom against the taipan snake (Oxyuranus scutellatus) venom and comparison with an equine antivenom. Toxicon. 2016;120:1–8.PubMedCrossRefGoogle Scholar
  74. Nimorakiotakis VB, Winkel KD. Prospective assessment of the false positive rate of the Australian snake venom detection kit in healthy human samples. Toxicon. 2016;111:143–6.PubMedCrossRefGoogle Scholar
  75. O’Brien J, Lee SH, Onogi S, Shea KJ. Engineering the protein corona of a synthetic polymer nanoparticle for broad-spectrum sequestration and neutralization of venomous biomacromolecules. J Am Chem Soc. 2016;138:16604–7.PubMedCrossRefGoogle Scholar
  76. O’Leary MA, Isbister GK. Commercial monovalent antivenoms in Australia are polyvalent. Toxicon. 2009;54:192–5.PubMedCrossRefGoogle Scholar
  77. O’Leary M, Schneider JJ, Krishnan BP, et al. Cross-neutralisation of Australian brown and tiger snake venoms with commercial antivenoms: cross-reactivity or antivenom mixtures? Toxicon. 2007;50:206–13.PubMedCrossRefGoogle Scholar
  78. O’Rourke KM, Correlje E, Martin CL, Robertson JD, Isbister GK. Point-of-care derived INR does not reliably detect significant coagulopathy following Australian snakebite. Thromb Res. 2013;132:610–3.PubMedCrossRefGoogle Scholar
  79. Othong R, Sheikh S, Airuwaili N, et al. Exotic venomous snakebite drill. Clin Toxicol. 2012;50:490–6.CrossRefGoogle Scholar
  80. Ou J, Haiart S, Galluccio S, White J, Weinstein SA. An instructive case of presumed brown snake (Pseudonaja spp.) envenoming. Clin Toxicol. 2015;53:834–9.CrossRefGoogle Scholar
  81. Pearson JA, Tyler MI, Retson KV, Howden ME. Studies on the subunit structure of textilotoxin, a potent presynaptic neurotoxin from the venom of the Australian common brown snake (Pseudonaja textilis). 3. The complete amino-acid sequences of all the subunits. Biochim Biophys Acta. 1993;1161:223–9.PubMedCrossRefGoogle Scholar
  82. Premawardhena AP, de Silva CE, Fonseka M, et al. Low dose subcutaneous adrenaline to prevent acute adverse reactions to antivenom serum in people bitten by snakes: randomised, placebo controlled trial. BMJ. 1999;318:1041–3.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Pumphrey RS. Lessons for management of anaphylaxis from a study of fatal reactions. Clin Exp Allergy. 2000;30:1144–50.PubMedCrossRefGoogle Scholar
  84. Pycroft K, Fry BG, Isbister GK, et al. Toxinology of venoms from five Australian lesser known elapid snakes. Basic Clin Pharmacol Toxicol. 2012;111:268–74.PubMedCrossRefGoogle Scholar
  85. Rao VS, Kini RM. Pseutarin C, a prothrombin activator from Pseudonaja textilis venom: its structural and functional similarity to mammalian coagulation factor Xa-Va complex. Thromb Haemost. 2002;88:611–9.PubMedCrossRefGoogle Scholar
  86. Rao VS, Joseph JS, Kini RM. Group D prothrombin activators from snake venom are structural homologues of mammalian blood coagulation factor Xa. Biochem J. 2003;369:635–42.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Razavi S, Weinstein SA, Bates DJ, Alfred S, White J. The Australian mulga snake (Pseudechis australis: Elapidae): report of a large case series of bites and review of current knowledge. Toxicon. 2014;85:17–26.PubMedCrossRefGoogle Scholar
  88. Reeks T, Jones A, Brust A, et al. A defined alpha-helix in the bifunctional O-glycosylated natriuretic peptide TcNPa from the venom of Tropidechis carinatus. Angew Chem. 2015;54:4828–31.CrossRefGoogle Scholar
  89. Reza MA, Swarup S, Kini RM. Gene structures of trocarin D and coagulation factor X, two functionally diverse prothrombin activators from Australian rough scaled snake. Pathophysiol Haemost Thromb. 2005;34:205–8.PubMedCrossRefGoogle Scholar
  90. Reza MA, Minh Le TN, Swarup S, Kini RM. Molecular evolution caught in action: gene duplication and evolution of molecular isoforms of prothrombin activators in Pseudonaja textilis (brown snake). J Thromb Haemost. 2006;4:1346–53.PubMedCrossRefGoogle Scholar
  91. Ryan NM, Kearney RT, Brown SG, Isbister GK. Incidence of serum sickness after the administration of Australian snake antivenom (ASP-22). Clin Toxicol. 2016;54:27–33.CrossRefGoogle Scholar
  92. Sethi M, Cook M, Winkel KD. Persistent anosmia and olfactory bulb atrophy after mulga (Pseudechis australis) snakebite. J Clin Neurosci. 2016;29:199–201.PubMedCrossRefGoogle Scholar
  93. Shea GM. The distribution and identification of dangerously venomous Australian terrestrial snakes. Aust Vet J. 1999;77:791–8.PubMedCrossRefGoogle Scholar
  94. Simonato M, Morbiato L, Zorzi V, et al. Production in Escherichia coli, folding, purification and characterization of notexin with wild type sequence and with N-terminal and catalytic site mutations. Toxicon. 2014;88:11–20.PubMedCrossRefGoogle Scholar
  95. Speijer H, Govers-Riemslag JW, Zwaal RF, Rosing J. Prothrombin activation by an activator from the venom of Oxyuranus scutellatus (taipan snake). J Biol Chem. 1986;261:13258–67.PubMedGoogle Scholar
  96. Sribar J, Ober J, Kri I. Understanding the molecular mechanism underlying the presynaptic toxicity of secreted phospholipases A2: an update. Toxicon. 2014;89:9–16.PubMedCrossRefGoogle Scholar
  97. St Pierre L, Woods R, Earl S, Masci PP, Lavin MF. Identification and analysis of venom gland-specific genes from the coastal taipan (Oxyuranus scutellatus) and related species. Cell Mol Life Sci. 2005;62:2679–93.PubMedCrossRefGoogle Scholar
  98. St Pierre L, Flight S, Masci PP, et al. Cloning and characterization of natriuretic peptides from the venom glands of Australian elapids. Biochimie. 2006;88:1923–31.PubMedCrossRefGoogle Scholar
  99. St Pierre L, Birrell GW, Earl ST, et al. Diversity of toxic components from the venom of the evolutionary distinct black whip snake, Demansia vestigiata. J Proteome Res. 2007;6:3093–107.PubMedCrossRefGoogle Scholar
  100. Stocker K, Hauer H, Muller C, Triplett DA. Isolation and characterization of textarin, a prothrombin activator from eastern brown snake (Pseudonaja textilis) venom. Toxicon. 1994;32:1227–36.PubMedCrossRefGoogle Scholar
  101. Sutherland SK, Tibballs J. Australian animal toxins: the creatures, their toxins and care of the poisoned patient. 2nd ed. Melbourne: Oxford University Press; 2001.Google Scholar
  102. Sutherland SK, Coulter AR, Harris RD. Rationalization of first-aid measures for elapid snakebite. Lancet. 1979;1:183–6.PubMedCrossRefGoogle Scholar
  103. Suzuki N, Yamazaki Y, Brown RL, Fujimoto Z, Morita T, Mizuno H. Structures of pseudechetoxin and pseudecin, two snake-venom cysteine-rich secretory proteins that target cyclic nucleotide-gated ion channels: implications for movement of the C-terminal cysteine-rich domain. Acta Crystallogr D Biol Crystallogr. 2008;64:1034–42.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Tan LC, Kuruppu S, Smith IA, Reeve S, Hodgson WC. Isolation and pharmacological characterisation of hostoxin-1, a postsynaptic neurotoxin from the venom of the Stephen’s banded snake (Hoplocephalus stephensi). Neuropharmacology. 2006;51:782–8.PubMedCrossRefGoogle Scholar
  105. Tanos PP, Isbister GK, Lalloo DG, Kirkpatrick CM, Duffull SB. A model for venom-induced consumptive coagulopathy in snake bite. Toxicon. 2008;52:769–80.PubMedCrossRefGoogle Scholar
  106. Tans G, Govers-Riemslag JW, van Rijn JL, Rosing J. Purification and properties of a prothrombin activator from the venom of Notechis scutatus scutatus. J Biol Chem. 1985;260:9366–72.PubMedGoogle Scholar
  107. Tedesco E, Rigoni M, Caccin P, Grishin E, Rossetto O, Montecucco C. Calcium overload in nerve terminals of cultured neurons intoxicated by alpha-latrotoxin and snake PLA2 neurotoxins. Toxicon. 2009;54:138–44.PubMedCrossRefGoogle Scholar
  108. Tibballs J. The cardiovascular, coagulation and haematological effects of tiger snake (Notechis scutatus) prothrombin activator and investigation of vasoactive substances. Anaesth Intensive Care. 1998a;26:536–47.PubMedGoogle Scholar
  109. Tibballs J. The cardiovascular, coagulation and haematological effects of tiger snake (Notechis scutatus) venom. Anaesth Intensive Care. 1998b;26:529–35.PubMedGoogle Scholar
  110. Tibballs J, Sutherland S, Kerr S. Studies on Australian snake venoms. Part I: the haemodynamic effects of brown snake (Pseudonaja) species in the dog. Anaesth Intensive Care. 1989;17:466–9.PubMedGoogle Scholar
  111. Tibballs J, Sutherland SK, Rivera R, Masci P. The cardiovascular and haematological effects of purified prothrombin activator from the common brown snake (Pseudonaja textilis) and their antagonism with heparin. Anaesth Intensive Care. 1992;20:28–32.PubMedGoogle Scholar
  112. Treppmann P, Brunk I, Afube T, Richter K, Gudrun AH. Neurotoxic phospholipases directly affect synaptic vesicle function. J Neurochem. 2011;117:757–64.PubMedGoogle Scholar
  113. Ukuwela KDB, de Silva A, Mumpuni M, Fry BG, Lee MSY, Sanders KL. Molecular evidence that the deadliest sea snake Enhydrina schistosa (Elapidae: Hydrophiinae) consists of two convergent species. Mol Phylogenet Evol. 2012;66:262–9.PubMedCrossRefGoogle Scholar
  114. Venkateswarlu D, Krishnaswamy S, Darden TA, Pedersen LG. Three-dimensional solution structure of Tropidechis carinatus venom extract trocarin: a structural homologue of Xa and prothrombin activator. J Mol Model. 2002;8:302–13.PubMedCrossRefGoogle Scholar
  115. Viala VL, Hildebrand D, Trusch M, et al. Pseudechis guttatus venom proteome: insights into evolution and toxin clustering. J Proteome. 2014;110:32–44.CrossRefGoogle Scholar
  116. Viala VL, Hildebrand D, Trusch M, et al. Venomics of the Australian eastern brown snake (Pseudonaja textilis): detection of new venom proteins and splicing variants. Toxicon. 2015;107:252–65.PubMedCrossRefGoogle Scholar
  117. Walker FJ, Owen WG, Esmon CT. Characterization of the prothrombin activator from the venom of Oxyuranus scutellatus scutellatus (taipan venom). Biochemistry. 1980;19:1020–3.PubMedCrossRefGoogle Scholar
  118. Welton RE, Williams DJ, Liew D. Injury trends from envenoming in Australia, 2000–2013. Int Med J. 2017;47:170–6.CrossRefGoogle Scholar
  119. White J. A clinician’s guide to Australian venomous bites and stings. bioCSL Pty Ltd, Parkville, Australia; 2013.Google Scholar
  120. Williams V, White J. Purification and properties of a procoagulant from peninsula tiger snake (Notechis ater niger) venom. Toxicon. 1989;27:773–9.PubMedCrossRefGoogle Scholar
  121. Williams DJ, Jensen SD, Nimorakiotakis B, Muller R, Winkel KD. Antivenom use, premedication and early adverse reactions in the management of snake bites in rural Papua New Guinea. Toxicon. 2007;49:780–92.PubMedCrossRefGoogle Scholar
  122. Yamazaki Y, Brown RL, Morita T. Purification and cloning of toxins from elapid venoms that target cyclic nucleotide-gated ion channels. Biochemistry. 2002;41:11331–7.PubMedCrossRefGoogle Scholar
  123. Yuan Y, Jackson SP, Mitchell CA, Salem HH. Purification and characterisation of a snake venom phospholipase A2: a potent inhibitor of platelet aggregation. Thromb Res. 1993;70:471–81.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Intensive Care UnitThe Royal Children’s Hospital, The University of MelbourneMelbourneAustralia

Personalised recommendations