Envenomations by Widow, Recluse, and Medically Implicated Spiders

  • Richard S. Vetter
  • William V. Stoecker
  • Richard C. Dart
Reference work entry
Part of the Toxinology book series (TOXI)


Although there are many spider species throughout the world, most of which have venom, only about 60 are toxic enough to cause deleterious reactions in humans. In North America, only the widow and recluse groups are considered to be medically important. Widow envenomations are readily managed due to easily recognizable signs and symptoms; the pathophysiology of the venom effects is well known. Widow antivenom has been effective in reversing envenomation symptoms within a short period of time. In contrast, recluse envenomations are not as easily recognized and remedied due to a wide range of manifestation of venom effects and a still-developing understanding of the pathophysiology. Recluse antivenom is available in South America where envenomation manifestation appears more deleterious but not in North America where bites are less common and less dramatic. Adding difficulty in the recluse diagnostic process is the obfuscation due to a large number of non-spider-related dermonecrotic lesions that physicians too often misdiagnose as recluse spider bites, muddling the medical literature and preventing proper treatment. The overreliance by the medical community on spiders as causes of maladies has led to several other virtually harmless spider species around the world to be falsely incriminated in medical events.


  1. Akdeniz S, Green JA, Stoecker WV, Gomez HF, Keklikçi SU. Diagnosis of loxoscelism in two Turkish patients confirmed with an enzyme-linked immunosorbent assay (ELISA) and non-invasive tissue sampling. Dermatol Online J. 2007;13(2):11.PubMedGoogle Scholar
  2. Anderson PC. Missouri brown recluse spider: a review and update. Mo Med. 1998;95(7):318–22.PubMedGoogle Scholar
  3. Atkinson RK, Farrell DJ, Leis AP. Evidence against the involvement of Mycobacterium ulcerans in most cases of necrotic arachnidism. Pathology. 1995;27(1):53–7.CrossRefPubMedGoogle Scholar
  4. Binford GJ. An analysis of geographic and intersexual chemical variation in venoms of the spider Tegenaria agrestis (Agelenidae). Toxicon. 2001;39(7):955–68.CrossRefPubMedGoogle Scholar
  5. Boyer LV, Theodorou AA, Gomez HF, Binford GJ. Spider on the headboard, child in the unit: severe Loxosceles arizonica envenomation confirmed by delayed spider identification and tissue antigen detection. J Toxicol Clin Toxicol. 2000;38(5):510.Google Scholar
  6. Chaim OM, Sade YB, da Silveira RB, Toma L, Kalapothakis E, Chávez-Olórtegui C, Mangili OC, Gremski W, von Dietrich CP, Nader HB, Veiga SS. Brown spider dermonecrotic toxin directly induces nephrotoxicity. Toxicol Appl Pharmacol. 2006;211(1):64–77.CrossRefPubMedGoogle Scholar
  7. Clark RF, Wethern-Kestner S, Vance MV, Gerkin R. Clinical presentation and treatment of black widow spider envenomation: a review of 163 cases. Ann Emerg Med. 1992;21(7):782–7.CrossRefPubMedGoogle Scholar
  8. da Silva PH, da Silveira RB, Appel MH, Mangili OC, Gremski W, Veiga SS. Brown spiders and loxoscelism. Toxicon. 2004;44(7):693–709.CrossRefPubMedGoogle Scholar
  9. de Oliveira KC, Goncalves de Andrade RM, Piazza RMF, Ferreira Junior JMC, van den Berg CM, Tambourgi DV. Variations in Loxosceles spider venom composition and toxicity contribute to the severity of envenomation. Toxicon. 2005;45(4):421–9.CrossRefPubMedGoogle Scholar
  10. Daly FFS, Hill RE, Bogdan GM, Dart RC. Neutralization of Latrodectus mactans and L. hesperus venom by redback spider (L. hasselti) antivenom. J Toxicol Clin Toxicol. 2007;39(2):119–23.CrossRefGoogle Scholar
  11. Dart RC, Bogdan G, Heard K, Bucher Bartelson B, Garcia-Ubbelohde W, Bush S, Arnold T, Clark RC, Hendey GW, Holsteg C, Spradley EA. A randomized, double-blind, placebo-controlled trial of a highly purified equine F(ab)2 antibody black widow spider antivenom. Ann Emerg Med. 2013;61(4):458–67.CrossRefPubMedGoogle Scholar
  12. Dart RC, Heard K, Bush SP, Arnold TC, Sutter ME, Campagne D, Holstege C, Seifert S, Quan D, Borron SW, Meurer DA, Anderson VE. A phase III clinical trial of Analatro® [Antivenin Latrodectus (black widow) equine immune F(ab′)2]. Clin Toxicol. 2016;54(8):659.CrossRefGoogle Scholar
  13. Duncan RP, Rynerson MR, Ribera C, Binford GJ. Diversity of Loxosceles spiders in northwestern Africa and molecular support for cryptic species in the Loxosceles rufescens lineage. Mol Phylogenet Evol. 2010;55(1):234–48.CrossRefPubMedGoogle Scholar
  14. Elston DM, Miller SD, Young RJ III, Eggers J, McGlasson D, Schmidt WH, Bush A. Comparison of colchicine, dapsone, triamcinolone, and diphenhydramine therapy for the treatment of brown recluse spider envenomation: a double-blind, controlled study in a rabbit model. Arch Dermatol. 2005;141(5):595–7.CrossRefPubMedGoogle Scholar
  15. Garb JE, Hayashi CY. Molecular evolution of α-latrotoxin, the exceptionally potent vertebrate neurotoxin in black widow spider venom. Mol Biol Evol. 2013;30(5):999–1014.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Garb JE, Gonzalez A, Gillespie RG. The black widow spider genus Latrodectus (Araneae: Theridiidae): phylogeny, biogeography, and invasion history. Mol Phylogenet Evol. 2004;31(3):1127–42.CrossRefPubMedGoogle Scholar
  17. Gaver-Wainwright MM, Zack RS, Foradori MJ, Lavine LC. Misdiagnosis of spider bites: bacterial associates, mechanical pathogen transfer, and hemolytic potential of venom from the hobo spider, Tegenaria agrestis (Araneae: Agelenidae). J Med Entomol. 2011;48(2):382–8.CrossRefPubMedGoogle Scholar
  18. Gomez HF, Miller MJ, Desai A, Warren JS. Loxosceles spider venom induces the production of alpha and beta chemokines. Inflammation. 1999;23(3):207–15.PubMedGoogle Scholar
  19. Gomez HF, Krywko DM, Stoecker WV. A new assay for the detection of Loxosceles species (brown recluse) spider venom. Ann Emerg Med. 2002;39(5):469–74.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Graudins A, Gunja N, Broady KW, Nicholson GM. Clinical and in vitro evidence for the efficacy of Australian red-back spider (Latrodectus hasselti) antivenom in the treatment of envenomation by the cupboard spider (Steatoda grossa). Toxicon. 2002;40(6):767–75.CrossRefPubMedGoogle Scholar
  21. Gremski LH, Trevisan-Silva D, Ferrer VP, Matsubara FH, Meissner GO, Wille ACM, Vuitika L, Dias-Lopes C, Ullah A, de Moraes FT, Chávez-Olórtegui C, Barbaro KC, Murakami MT, Arni RK, Senff-Ribeiro A, Chaim OM, Veiga SS. Recent advances in the understanding of brown spider venoms: from the biology of spiders to the molecular mechanisms of toxins. Toxicon. 2014;83:91–120.CrossRefPubMedGoogle Scholar
  22. Isbister GK, Gray MR. White-tail spider bite: a prospective study of 130 definite bites by Lampona species. Med J Aust. 2003;179(4):199–202.PubMedGoogle Scholar
  23. Isbister GK, Brown SG, Miller M, Tankel A, Macdonald E, Stokes B, Ellis R, Nagree Y, Wilkes GJ, James R, Short A, Holdgate A. A randomised controlled trial of intramuscular vs. intravenous antivenom for latrodectism – the RAVE study. Q J Med. 2008;101(7):557–65.CrossRefGoogle Scholar
  24. Isbister GK, Page CB, Buckley NA, Fatovich DM, Pascu O, Macdonald SP, Calver LA, Brown SG, RAVE Investigators. Randomized controlled trial of intravenous antivenom versus placebo for latrodectism: the second Redback Antivenom Evaluation (RAVE-II) study. Ann Emerg Med. 2014;64(6):620–8.CrossRefPubMedGoogle Scholar
  25. Malaque CMS, Santoro ML, Cardoso JLC, Conde MR, Novaes CTG, Risk JY, França FOS, de Medeiros CR, Fan HW. Clinical picture and laboratorial evaluation in human loxoscelism. Toxicon. 2011;58(8):664–71.CrossRefPubMedGoogle Scholar
  26. Maretic Z, Lebez D. Araneism with special reference to Europe. Belgrade: Nolit Publishing House; 1979.Google Scholar
  27. McDade J, Aygun B, Ware RE. Brown recluse spider (Loxosceles reclusa) envenomation leading to acute hemolytic anemia in six adolescents. J Pediatr. 2010;156(1):155–7.CrossRefPubMedPubMedCentralGoogle Scholar
  28. McGlasson DL, Green JA, Stoecker WV, Babcock JL, Calcara DA. Duration of Loxosceles reclusa venom detection by ELISA from swabs. Clin Lab Sci. 2009;22(4):216–22.PubMedPubMedCentralGoogle Scholar
  29. McKeown N, Vetter RS, Hendricksen RG. Verified spider bites in Oregon (USA) with the intent to assess hobo spider venom toxicity. Toxicon. 2014;84:51–5.CrossRefPubMedGoogle Scholar
  30. Mowry JB, Spyker DA, Brooks DE, McMillan N, Schauben JE. 2014 annual report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 32nd annual report. Clin Toxicol. 2015;53(10):962–1147.CrossRefGoogle Scholar
  31. Müller GJ. Black and brown widow spider bites in South Africa: a series of 45 cases. S Afr Med J. 1993;83(6):399–405.PubMedGoogle Scholar
  32. O’Malley GF, Dart RC, Kuffner WF. Successful treatment of latrodectism with antivenom after 90 hours. N Engl J Med. 1999;340(8):657.CrossRefPubMedGoogle Scholar
  33. Paixão-Cavalante D, van den Berg CW, Gonçalves-de-Andrade RM, Fernandes-Pedrosa MF, Okamoto CK, Tambourgi DV. Tetracycline protects against dermonecrosis induced by Loxosceles spider venom. J Investig Dermatol. 2007;127(6):1410–8.CrossRefGoogle Scholar
  34. Pauli I, Puka J, Gubert IC, Minozzo JC. The efficacy of antivenom in loxoscelism treatment. Toxicon. 2006;48(2):123–37.CrossRefPubMedGoogle Scholar
  35. Payne KS, Schilli S, Meier K, Rader RK, Dyer JA, Mold JW, Green JA, Stoecker WV. Extreme pain from brown recluse spider bites: model for cytokine-driven pain. JAMA Dermatol. 2014;150(11):1205–8.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Rader RK, Stoecker WV, Malters JM, Marr MT, Dyer J. Seasonality of brown recluse populations is reflected by numbers of brown recluse envenomations. Toxicon. 2012;60(1):1–3.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ribeiro LA, Jorge MT, Piesco RV, de Andrade Nishioka S. Wolf spider bites in Sao Paulo, Brazil: a clinical and epidemiological study of 515 cases. Toxicon. 1990;28(6):715–7.CrossRefPubMedGoogle Scholar
  38. Sams HH, Hearth SB, Long LL, Wilson DC, Sanders DH, King LE Jr. Nineteen documented cases of Loxosceles reclusa envenomation. J Am Acad Dermatol. 2001;44(4):603–8.CrossRefPubMedGoogle Scholar
  39. Spielman A, Levi HW. Probable envenomation by Cheiracanthium mildei; a spider found in houses. Am J Trop Med Hyg. 1970;19(4):729–32.CrossRefPubMedGoogle Scholar
  40. Stoecker WV, Green JA, Gomez HF. Diagnosis of loxoscelism in a child confirmed with an enzyme-linked immunosorbent assay and noninvasive tissue sampling. J Am Acad Dermatol. 2006;55(5):888–90.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Stoecker WV, Vetter RS, Dyer JA. NOT RECLUSE – a mnemonic device to avoid false diagnoses of brown recluse spider bites. JAMA Dermatol. 2017;153(5):377–8.CrossRefPubMedGoogle Scholar
  42. Swanson DL, Vetter RS. Bites of brown recluse spiders and suspected necrotic arachnidism. N Engl J Med. 2005;352(7):700–7.CrossRefPubMedGoogle Scholar
  43. Tutrone WD, Green KM, Norris T, Weinberg JM. Brown recluse spider envenomation: dermatologic application of hyperbaric oxygen therapy. J Drugs Dermatol. 2005;4(4):424–8.PubMedGoogle Scholar
  44. Vetter RS. Spiders of the genus Loxosceles (Araneae: Sicariidae): a review of biological, medical and psychological aspects regarding envenomations. J Arachnol. 2008;36(1):150–63.CrossRefGoogle Scholar
  45. Vetter RS, Isbister GK. Do hobo spider bites cause dermonecrotic injuries? Ann Emerg Med. 2004;44(6):605–7.CrossRefPubMedGoogle Scholar
  46. Vetter RS, Isbister GK. Medical aspects of spider bites. Annu Rev Entomol. 2008;53:409–29.CrossRefPubMedGoogle Scholar
  47. Vetter RS, Isbister GK, Bush SP, Boutin LJ. Verified bites by Cheiracanthium spiders in the United States and Australia: where is the necrosis? Am J Trop Med Hyg. 2006;74(6):1043–8.PubMedGoogle Scholar
  48. Vetter RS, Swanson DL, Weinstein SA, White J. Do spiders vector bacteria during bites? The evidence indicates otherwise. Toxicon. 2015;93:171–4.CrossRefPubMedGoogle Scholar
  49. Wiener S. Red back spider bite in Australia: an analysis of 167 cases. Med J Aust. 1961;2:44–9.Google Scholar
  50. Wolfe MD, Myers O, Caravati EM, Rayburn WF, Seifert SA. Black widow spider envenomation in pregnancy. J Matern Fetal Neonatal Med. 2011;24(1):122–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Richard S. Vetter
    • 1
  • William V. Stoecker
    • 2
    • 3
  • Richard C. Dart
    • 4
    • 5
  1. 1.Department of EntomologyUniversity of CaliforniaRiversideUSA
  2. 2.Department of DermatologyUniversity of Missouri Health CenterColumbiaUSA
  3. 3.SpidertekRollaUSA
  4. 4.Denver Health and Hospital AuthorityRocky Mountain Poison and Drug CenterDenverUSA
  5. 5.Emergency MedicineUniversity of Colorado School of MedicineAuroraUSA

Personalised recommendations