Translational Toxinology: Venom to Antivenom

  • Daniel E. Keyler
Reference work entry
Part of the Toxinology book series (TOXI)


A great natural diversity exists across animal taxa and species that produce venom, and although venoms are primarily used in the acquisition of prey and secondarily for defense, it is their adverse effects on humans that have driven scientific and medical research. The spectrum of venom-producing organisms and the venom components and toxins across organism species is highly variable. Venom components function in concert and selectively in their actions producing pathophysiological effects for subduing prey. In contrast, when non-prey species such as humans are encountered, the biting or stinging as a result of a defensive or fear response may result in envenomation. Following envenomation a myriad of venom-/toxin-induced adverse and toxicological insults to various physiological systems may result. What creatures are venomous, how they envenomate, their venom composition, how their venom components/toxins work mechanistically, and the pathophysiological effects of venom in envenomated humans led to the quest for remedies and antidotes. Prominently, among therapeutic advancements was the development of passive antisera therapy in the late1800s for cobra envenomation (Calmette 1894). Today’s formulations of snake venom immunotherapies (antivenom) are relatively unchanged with respect to general antibody structure and mechanism of action. However, recent technological advances in antibody preparation, purification, and product formulation and combined venomic and antivenomic technologies are leading to novel, refined toxin-targeted antivenoms (Calvete et al. 2009). Toxinology has been translational over time, across biological systems, across scientific disciplines, and technologically, leading to our improved understanding of venom-producing animals, venoms, and the design and development of more efficacious antivenoms.


  1. Alvarenga LM, Zahid M, di Tommaso A, Juste MO, Aubrey N, Billiad P, Muzard J. Engineering venom’s toxin-neutralizing antibody fragments and its therapeutic potential. Toxins. 2014;6:2541–67.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Brown N, Landon J. Antivenom: the most cost-effective treatment in the world? Toxicon. 2010;55:1405–7.CrossRefPubMedGoogle Scholar
  3. Calmette A. Contribution a l’e’tude du venin des serpents, Immunisation des animaux et tratitment del’envenimation. Ann Inst Pasteur. 1894;8:257–75.Google Scholar
  4. Calvete JJ. Snake venomics: from the inventory of toxins to biology. Toxicon. 2013;75:44–62.CrossRefPubMedGoogle Scholar
  5. Calvete JJ, Lomonte B. A bright future for integrative venomics. Toxicon. 2015;107:159–62.CrossRefPubMedGoogle Scholar
  6. Calvete JJ, Sanz L, Angulo Y, Lamonte B, Guttierrez JM. Venoms, venomics, antivenomics. FEBS Lett. 2009;583:1736–43.CrossRefPubMedGoogle Scholar
  7. Calvete JJ, Sanz L, Perez A, Borges A, Vargas AM, Lomonte B, Angulo Y, Gutierrez JM, Chalkidis HM, Mourao RH, Furtado MF, Moura da Silva AM. Snake population venomics and antivenomics of Bothrops atrox: paedomorphism along its transamizonian dispersal and implications of geographic venom variability on snakebite management. J Proteomics. 2011;74(4):510–27.CrossRefPubMedGoogle Scholar
  8. Chan YS, Cheung RCF, Xia L, Wong JH, Ng TB, Chan WY. Snake venom toxins; toxicity and medicinal applications. Appl Microbiol Biotechnol. 2016;100:6165–81.CrossRefPubMedGoogle Scholar
  9. Chavanayarn C, Thanongsaksrikul J, Thueng-in K, Bangphoomi K, Sookrung N, Chaicumpa W. Humanized-single domain antibodies (VH/VHH) that bound specifically to Naja kaouthia phospholipase A2 and neutralized the enzymatic activity. Toxins. 2012;4:554–67. Scholar
  10. Chen Y-J, Tsai C-Y, Hu W-P, Chang L-S. DNA aptamers against Taiwan banded krait alpha-bungarotoxin recognize Taiwan cobra cardiotoxin. Toxins. 2016;8:66. Scholar
  11. Chippaux JP. Estimating the global burden of snakebite can help improve management. PLoSMed [Internet]. 2008;5(11):e221. Scholar
  12. Chippaux JP. Role of antivenoms in the treatment of snake envenomation. Bull Acad Natl Med. 2013;197:993–1006.PubMedGoogle Scholar
  13. Chippaux JP, Williams V, White J. Snake venom variability: methods of study, results and interpretation. Toxicon. 1991;29:1279–303.CrossRefPubMedGoogle Scholar
  14. Cook DA, Samarasekara CL, Wagstaff SC, Kinne J, Wernery U, Harrison RA. Analysis of camelid IgG for antivenom development: immunoreactivity and preclinical neurtalisation of venom-induced pathology b IgG subclasses, and the effect of heat treatment. Toxicon. 2010a;56(4):596–603.CrossRefPubMedGoogle Scholar
  15. Cook DA, Owen T, Wagstaff SC, Wernery U, Harrison PA. Analysis of camelid IgG for antivenom development: serological responses of venom-immunised camels to prepare either monospecific of polyspecific antivenoms in West Africa. Toxicon. 2010b;56(3):363–72.CrossRefPubMedGoogle Scholar
  16. Delves PJ, Riott IM. The immune system. Advances in immunology. N Engl J Med. 2000;343:37–49.CrossRefPubMedGoogle Scholar
  17. Diaz P, Malave C, Zerpa N, Vasquez H, D’Suze G, Montero Y, Castillo C, Alagon A, Sevcik C. IgY pharmacokinetics in rabbits: implications for IgY use as antivenoms. Toxicon. 2014;90:124–33.CrossRefPubMedGoogle Scholar
  18. Doley R, Kini RM. Protein complexes in snake venom. Cell Mol Life Sci. 2009;66:2851–71.CrossRefPubMedGoogle Scholar
  19. Escalante T, Rucavado A, Pinto AF, Terra RM, Gutiérrez JM, Fox JW. Wound exudate as a proteomic window to reveal different mechanisms of tissue damage by snake venom toxins. J Proteome Res. 2009;8(11):5120–31.CrossRefPubMedGoogle Scholar
  20. Espino-Solis GP, Riano-Umbarlia L, Becerril B, Possani LD. Antidotes against venomous animals: state of the art and prospectives. J Proteomics. 2009;72:183–99.CrossRefPubMedGoogle Scholar
  21. Fox JW. A brief review of the scientific history of several lesser-known snake venom proteins: l-amino acid oxidases, hyaluronidases, and phosphodiesterases. Toxicon. 2013;62:75–82.CrossRefPubMedGoogle Scholar
  22. Fry BG, Richards ES, Cousin X, Jackson TNW, Weise C, Sunagar K. Lesser-known or putative reptile toxins. In: Fry BG, editor. Venomous reptiles and their toxins. Oxford: Oxford University Press; 2015.Google Scholar
  23. Gutiérrez JM. Improving antivenom availability and accessibility: science, technology, and beyond. Toxicon. 2012;60:676–87.CrossRefPubMedGoogle Scholar
  24. Gutiérrez JM. Understanding and confronting snakebite envenoming: the harvest of cooperation. Toxicon. 2016;109:51–62.CrossRefPubMedGoogle Scholar
  25. Gutiérrez JM, León L, Lomonte B. Pharmacokinetic-pharmacodynamic relationships of immunoglobulin therapy for envenomation. Clin Pharmacokinet. 2003;42(8):721–41.CrossRefPubMedGoogle Scholar
  26. Gutiérrez JM, León L, Lomonte B, Angula Y. Antivenoms for snakebite envenoming. Inflamm Allergy Drug Targets. 2011;10(5):369–80.CrossRefPubMedGoogle Scholar
  27. Gutiérrez JM, Solano G, Pla D, Herrera M, Segura A, Villata M, Vargas M, Sanz L Lomonte B, Calvete, Leon G. Assessing the preclinical efficacy of antivenoms: from the lethality neutralization assay to antivenomics. Toxicon. 2013;69:168–179.CrossRefPubMedGoogle Scholar
  28. Gutiérrez JM, Lomonte B, Sanz L, Calvete JJ, Pla D. Immunological profile of antivenoms: preclinical analysis of the efficacy of a polyspecific antivenom through antivenomics and neutralization assay. J Proteomics. 2014a;105:340–50.CrossRefPubMedGoogle Scholar
  29. Gutiérrez JM, Burnouf T, Harrison RA, Calvete JJ, Kuch U, WArrell DA, Williams DJ. A multicomponent strategy to improve the availability of antivenom for treating snakebite envenoming. Bull World Health Organ. 2014b;92:526–32.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Harvey AL, Bradley KN, Cochran SA, Rowan EG, Pratt JA, Quilfeldt JA, Jerusalinsky DA. What can toxins tell us about drug discovery? Toxicon. 1998;36:163–1640.CrossRefGoogle Scholar
  31. Herrera M, Leon G, Segura A, Meneses F, Lomonte B, Chippaux JP, Gutierrez JM. Factors associated with adverse reactions induced by caprylic acid-fractionated whole IgG preparations: comparison between horse, sheep, and camel IgGs. Toxicon. 2005;46:775–81.CrossRefPubMedGoogle Scholar
  32. Herrera M, Solano D, Gómez A, Villalta M, Vargas M, Sánchez A, Gutiérrez JM, León G. Physiochemical characterization of commercial freeze-dried snake antivenoms. Toxicon. 2017;126:32–7.CrossRefPubMedGoogle Scholar
  33. Hmila I, Cosyns B, Tounsi H, Roosens B, Caveliers V, Abderrazek RB, Boubaker S, Muyldermans S, El Ayeb M, Bouhaouala-Zahar B, Lahoutte T. Pre-clinical studies of toxin-specific nanobodies: evidence of in vivo efficacy to prevent fatal disturbances by scorpion envenoming. Toxicol Appl Pharmacol. 2012;264:222–31.CrossRefPubMedGoogle Scholar
  34. Ho M, Kamolrat S, White NJ, Karbwang J, Looareesuwan S, Phillips RE, Warrell DA. Pharmacokinetics of three commercial antivenoms in patients envenomed by the Malayan pit viper, Calloselasma rhodostoma, in Thailand. Am J Trop Med Hyg. 1990;42(3):260–6.CrossRefPubMedGoogle Scholar
  35. Isbister GK, Brown SG, Investigators ASP. Bite in Australian snake handlers – Australian snakebite project (ASP). QJM. 2012;105(11):1089–95.CrossRefPubMedGoogle Scholar
  36. Ismail M, Abd-Elsalam MA, Al-Ahaidib MS. Pharmacokinetics of 125I-labelled Walterinnesia aegyptia venom and its specific antivenins: flash absorption and distribution of the venom and its toxin versus slow absorption and distribution of IgG, F(ab′)2, and F(ab) of the antivenin. Toxicon. 1998;36:93–114.CrossRefPubMedGoogle Scholar
  37. Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A, Premaratna R, Savioli L, Lalloo DG, de Silva HJ. Estimating the global burden of snakebite: a literature analysis and modeling based on regional estimates of envenoming and deaths. PLoS Med. 2008;5(11):e218. Scholar
  38. León G, Sanchez L, Hernandez A, Villalta M, Herrera M, Segura M, Estrada R, Gutiérrez JM. Immune response towards snake venoms. Inflamm Allergy Drug Targets. 2011;10(5):381–98.CrossRefPubMedGoogle Scholar
  39. Liu GL, Wang JQ, Bu DP, Cheng JB, Zhang CG, Wei HY, Zhou LY, Liu KL, Dong XL. Specific immune milk production of cows implanted with antigen-release devices. J Dairy Sci. 2009;92:100–8.CrossRefPubMedGoogle Scholar
  40. Mackessy SP. The field of reptile toxinology. Snake, lizards, and their venoms In: Mackessy SP, editor. Handbook of venoms and toxins of reptiles. Boca Raton: CRC Press; 2009, p. 3–23.Google Scholar
  41. Meddeb-Mouelhi F, Bouhaouala-Zahar B, Benlasfar Z, Hammadi M, Mejri T, Moslah M, Karoui H, Khorchani T, El Ayeb M. Immunized camel sera and derived immunoglobulin subclasses neutralizing Androctonous australis hector scorpion toxins. Toxicon. 2003;42(7):785–91.CrossRefPubMedGoogle Scholar
  42. Meier J, Stocker KF. Biology and distribution of venomous snakes of medical importance and the composition of snake venoms. In: Meier J, White J, editors. Handbook of clinical toxicology of animal venoms and poisons. Boca Raton: CRC Press; 1995. p. 367–412.Google Scholar
  43. Park CY, Jung SH, Lee SS, Rhee DK. Comparison of the rabbit pyrogen test and Limulus ameobocyte lysate (LAL) assay for endotoxin in hepatitis B vaccines and the effect of aluminum hydroxide. Biologicals. 2005;33(3):145–51.CrossRefPubMedGoogle Scholar
  44. Ritner RK. Medicine. In: Redford DB, editor. The Oxford encyclopedia of ancient Egypt. Oxford: Oxford University Press; 2001. p. 355.Google Scholar
  45. Schiermeier Q. Africa braced for snakebite crisis. Nature. 2015;525:299.CrossRefPubMedGoogle Scholar
  46. Seifert SA, Boyer LV. Recurrence phenomena after immunoglobulin therapy for snake envenomations: part 1. Pharmacokinetics and pharmacodynamics of immunoglobulin antivenoms and related antibodies. Ann Emerg Med. 2001;37:189–95.CrossRefPubMedGoogle Scholar
  47. Sevcik C, Diaz P, D’Suze G. On the presence of antibodies against bovine, equine and poultry immunoglobulins in human IgG preparations, and its implication on antivenom production. Toxicon. 2008;51:10–6.CrossRefPubMedGoogle Scholar
  48. Sintiprungrat K, Chaisurvia P, Watcharatanyatip K, Ratanabanangkoon K. Immunoaffinity chromatography in antivenomic studies: various parameters that can effect the results. Toxicon. 2016;119:129–39.CrossRefPubMedGoogle Scholar
  49. Stone SF, Isbister GK, Shahmy S, Mohamed F, Abeysinghe C, Karunathilake H, Ariaratnam A, Jacovy-Alner TE, Cotterell CL, Brown SG. Immune response to snake envenoming and treatment with antivenom: complement activation, cytokine production and mast cell degranulation. PLoS Negl Trop Dis. 2013;7:e2326.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Theakston RDG, Warrell DA, Griffiths E. Report of a WHO workshop on the standardization and control of antivenoms. Toxicon. 2003;41:541–57.CrossRefPubMedGoogle Scholar
  51. Vetter I, Davis JL, Rash LD, Anangi R, Mobli M, Alewood PF, Lewis RJ, King GF. Venomics: a new paradigm for natural products-based drug discovery. Amino Acids. 2011;40:15–28.CrossRefPubMedGoogle Scholar
  52. Warr GW, Magor KE, Higgins DA. IgY: clues to the origins of modern antibodies. Immunol Today. 1995;16(8):392–8.CrossRefPubMedGoogle Scholar
  53. Warrell DA. Geographical and intraspecies variation in the clinical manifestations of envenoming by snakes. In: Thorpe RS, Wuster W, Malhorta A, editors. Venomous snakes, ecology, evolution, and snakebite. Oxford: Clarendon Press; 1997. p. 189–204.Google Scholar
  54. Warrell DA. Snakebite. Lancet. 2010;375(9708):77–88.CrossRefPubMedGoogle Scholar
  55. World Health Organization. WHO guidelines for the production, control, and regulation of snake antivenom immunoglobulins. Geneva: World Health Organization; 2010.Google Scholar
  56. Yap MKK, Tan NH, Sim SM, Fung SY, Tan CH. Pharmacokinetics of Naja Sumatrana (equatorial spitting cobra) venom and its major toxins in experimentally envenomed rabbits. PLoSMed [Internet]. 2014;8(6):e2890. Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Experimental and Clinical PharmacologyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations