Advertisement

Envenomation by Australian Hymenoptera: Ants, Bees, and Wasps

  • James Tibballs
Reference work entry
Part of the Toxinology book series (TOXI)

Abstract

The venoms of the order Hymenoptera, comprising ants, bees, and wasps, contain numerous toxic substances including a vast array of peptides, which serve to cause cell lysis and disrupt intracellular processes. Australia has numerous indigenous species of all Hymenoptera, but the imported European honeybee (Apis mellifera) and the European wasp (Vespula germanica) have added significantly to the burden of allergic reactions expected principally from stings by members of the indigenous ant genus Myrmecia. Although Hymenoptera toxins from multiple stings may damage organs and tissues especially muscle, hepatic, and renal and disrupt coagulation, a large number of toxins are allergenic and share significant homology between species and between bees and wasps. The overwhelming clinical effects of humans are allergic reactions varying from minor local inflammation to life-threatening IgE-mediated anaphylaxis which tends to progress with repeated venom exposures. However a state of immune tolerance may be achieved by regimens of repeated exposure to small quantities of venoms or recombinant allergens (venom immunotherapy). The diagnosis, monitoring, and prediction of the immunoreactivity of individual allergic victims are major difficulties in clinical management but facilitated with wider adoption of serum tryptase measurement and new techniques of in vitro basophil activation testing.

Keywords

Ants Bees Wasps Envenomation Allergies Proteins Clinical management Immunotherapy 

References

  1. Aili SR, Touchard A, Escoubas P, et al. Diversity of peptide toxins from stinging ant venoms. Toxicon. 2014;92:166–78.  https://doi.org/10.1016/j.toxicon.2014.10.021.CrossRefPubMedGoogle Scholar
  2. Anderson AN. Ant diversity in Australia: a systematic overview. In: Snelling RR, Fisher BK, Ward PS, editors. Advances in ant systematics (Hymenoptera: Formicidae): homage to E.O. Wilson – 50 years of contribution, vol. 80. Memoirs of the American Entomological Institute; 2007. p. 19–51.Google Scholar
  3. Balit CR, Isbister GK, Buckley NA. Randomized controlled trial of topical aspirin in the treatment of bee and wasp stings. J Toxicol Clin Toxicol. 2003;41:801–8.CrossRefPubMedGoogle Scholar
  4. Blank S, Seismann H, McIntyre M, et al. Vitellogenins ane new high molecular weight components and allergens (Api m 12 and Ves v 6) of Apis mellifera and Vespula vulgaris venom. PLoS One. 2013;8:e62009.  https://doi.org/10.1371/journal.pone.0062009.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Borer AS, Wassmann P, Schmidt M, et al. Crystal structure of sol i 2: a major allergen from fire ant venom. J Mol Biol. 2012;415:635–48.  https://doi.org/10.1016/j.jmb.2011.10.009.CrossRefPubMedGoogle Scholar
  6. Boyle RJ, Elremeli M, Hockenhull J, et al. Venom immunotherapy for preventing allergic reactions to insect stings. Cochrane Database Syst Rev. 2012;10:CD008838.  https://doi.org/10.1002/14651858.CD008838.pub2/full.PubMedGoogle Scholar
  7. Bradley C. Venomous bites and stings in Australia to 2005, Injury research and statistics series, vol. 40. Adelaide: Australian Institute of Health and Welfare; 2008.Google Scholar
  8. Brown SGA, Franks RW, Baldo BA, Heddle RJ. Prevalence, severity, and natural history of jack jumper ant venom allergy in Tasmania. J Allergy Clin Immunol. 2003a;111:187–92.  https://doi.org/10.1067/mai.2003.48.CrossRefPubMedGoogle Scholar
  9. Brown SGA, van Eeden P, Wiese MD, et al. Causes of ant sting anaphylaxis in Australia: the Australian ant venom allergy study. Med J Aust. 2011;195:69–73.CrossRefPubMedGoogle Scholar
  10. Brown SGA, Wiese MD, Blackman KE, Heddle RJ. Ant venom immunotherapy: a double-blind, placebo-controlled, crossover trial. Lancet. 2003b;361:1001–6.CrossRefPubMedGoogle Scholar
  11. Brown SGA, Wu QX, Kelsall GRH, Heddle RJ, Baldo BA. Fatal anaphylaxis following jack jumper ant sting in southern Tasmania. Med J Aust. 2001;175:644–7.PubMedGoogle Scholar
  12. Cavill GWK, Robertson PL, Whitfield FB. Venom and venom apparatus of the bull ant, Myrmecia gulosa (Fabr.). Science. 1964;146:79–80.CrossRefPubMedGoogle Scholar
  13. Chen L, Fadamiro HY. Re-investigation of venom chemistry of Solenopsis fire ants. II. Identification of novel alkaloids in S. invicta. Toxicon. 2009;53:479–86.CrossRefPubMedGoogle Scholar
  14. Cleland JB. Insects and their relationship to injury and disease. Man Australia Ser III Med J Aust. 1931;2:711–3.Google Scholar
  15. Davies NW, Wiese MD, Brown SGA. Characterization of major peptides in ‘jack jumper’ ant venom by mass spectrometry. Toxicon. 2004;43:173–83.  https://doi.org/10.1016/j.toxicon.2003.11.021.CrossRefPubMedGoogle Scholar
  16. De La Lande IS, Thomas DW, Tyler MJ. Pharmacological analysis of the venom of the ‘bulldog’ ant Myrmecia forficata. In: Raudonat HW, editor. Recent advances in the pharmacology of toxins. London: Pergamon Press; 1965.Google Scholar
  17. Donovan GR, Baldo BA. Pilosulin 2 from ant venom, cloning and expression of a cDNA encoding it and its antihypertensive properties. PCT International Application 1997, p. 27. Patent No. WO 9713854.Google Scholar
  18. Donovan GR, Baldo BA, Sutherland S. Molecular cloning and characterization of a major alergen (Myr p I) from the venom of the Australian jumper ant, Myrmecia pilosula. Biochim Biophys Acta. 1993;1171:272–80.CrossRefPubMedGoogle Scholar
  19. Donovan GR, Street MD, Baldo BA, Alewood D, Alewood P, Sutherland S. Identification of an IgE-binding determinant of the major allergen Myr p I from the venom of the Australian jumper ant Myrmecia pilosula. Biochim Biophys Acta. 1994;1204:48–52.CrossRefPubMedGoogle Scholar
  20. Donovan GR, Street MD, Tetaz T, et al. Expression of jumper ant (Myrmecia pilosula) venom allergens: post-translational processing of allergen gene products. Biochem Mol Biol Int. 1996;39:877–85.PubMedGoogle Scholar
  21. Dos Santos Pinto JRA, Fox EGP, Saidemberg DM, et al. Proteomic view of the venom from the fire ant Solenopsis invicta Buren. J Proteomic Res. 2012;11:4643–53.  https://doi.org/10.1021/pr300451gl.CrossRefGoogle Scholar
  22. Douglas RG, Weiner JM, Abramson MJ, O’Hehir RE. Prevalence of severe ant-venom allergy in southeastern Australia. J Allergy Clin Immunol. 1998;101:129–31.CrossRefPubMedGoogle Scholar
  23. Franca FOS, Benvenuti LA, Fan HW, et al. Severe and fatal mass attacks by “killer” bees (Africanized honey bees-Apis mellifera scutellata) in Brazil: clinicopathological studies with measurement of serum venom concentrations. Q J Med. 1994;87:269–82.PubMedGoogle Scholar
  24. Golden DB. Discontinuing venom immunotherapy. Curr Opin Allergy Clin Immunol. 2001;1:353–6.CrossRefPubMedGoogle Scholar
  25. Golden DBK. New directions in diagnostic evaluation of insect allergy. Curr Opin Allergy Clin Immunol. 2014;14:334–9.  https://doi.org/10.1097/ACI.0000000000000072.CrossRefPubMedGoogle Scholar
  26. Golden DBK, Kagey-Sobotka A, Norman PS, Hamilton RG, Lichtenstein LM. Outcomes of allergy to insect stings in children, with and without venom immunotherapy. New Eng J Med. 2004;351:668–74.CrossRefPubMedGoogle Scholar
  27. Harvey P, Sperber S, Kette F, Heddle RJ, Roberts-Thomson PJ. Bee-sting mortality in Australia. Med J Aust. 1984;140:209–11.PubMedGoogle Scholar
  28. Hobday JD. (1998). Effective desensitisation to bee venom with monthly injections for 2 years. Australasian Society of Clinical Immunology and Allergy, 9th Annual Scientific Meeting; Brisbane; 28–31 Aug 1998.Google Scholar
  29. Hoffman DR, Dove DE, Jacobson RS. Allergens in hymenoptera venom. XX. Isolation of four allergens from imported fire ant (Solenopsis invicta) venom. J Allergy Clin Immunol. 1988;82:818–27.CrossRefPubMedGoogle Scholar
  30. Hoffman DR, Sakell TH, Schmidt M. Sol I 1, the phospholipase allergen of imported fire ant venom. J Allergy Clin Immunol. 2005;115:611–6.  https://doi.org/10.1016/j.jaci.2004.11.020.CrossRefPubMedGoogle Scholar
  31. Howell G, Butler J, deShazo RD, et al. Cardiodepressant and neurologic actions of Solenopsis invicta (imported fire ant) venom alkaloids. Ann Allergy Asthma Immunol. 2005;94:380–6.CrossRefPubMedGoogle Scholar
  32. Inagaki H, Akagi M, Imai HT, Taylor RW, Kubo T. Molecular cloning and biological characterization of novel antimicrobial peptides, pilosulin 3 and pilosulin 4, from a species of the Australian ant genus Myrmecia. Arch Biochem Biophys. 2004;428:170–8.CrossRefPubMedGoogle Scholar
  33. Inagaki H, Akagi M, Imai HT, et al. Pilosulin 5, a novel histamine-releasing peptide of the Australian ant, Myrmecia pilosula (Jack jumper ant). Arch Biochem Biophys. 2008;477:411–6.  https://doi.org/10.1016/j.abb.2008.05.014.CrossRefPubMedGoogle Scholar
  34. King MA, Wu QX, Donovan GR, Baldo BA. Flow cytometric analysis of cell killing by the jumper ant peptide pilosulin 1. Cytometry. 1998;32:268–73.CrossRefPubMedGoogle Scholar
  35. Korenblat P, Lundie MJ, Dankner RE, Day JH. A retrospective study of epinephrine administration for anaphylaxis: how many doses are needed? Allergy Asthma Proc. 1999;20:383–6.CrossRefPubMedGoogle Scholar
  36. Krishna MT, Ewan PW, Diwaker L, et al. Diagnosis and management of hymenoptera venom allergy: British Society for Allergy and Clinical Immunology (BSACI) guidelines. Clin Exp Allergy. 2011;41:1201–20.  https://doi.org/10.1111/j.1365-2222.2011.03788.x.CrossRefPubMedGoogle Scholar
  37. Levick N, Braitberg G. Massive European wasp envenomation of a child. Emerg Med. 1996;8:239–45.CrossRefGoogle Scholar
  38. Lewis JC, Day AJ, De la Lande IS. Phospholipase A in the venom of the Australian bulldog ant Myrmecia pyriformis. Toxicon. 1968;6:109–12.CrossRefPubMedGoogle Scholar
  39. Lewis JC, De La Lande IS. Pharmacologieal and enzymatic constituents of the venom of an Australian ‘bull dog’ ant Myrmecia pyriformis. Toxicon. 1967;4:225–34.CrossRefPubMedGoogle Scholar
  40. Li R, Zhang L, Fang Y, et al. Proteome and phosphoproteome analysis of honeybee (Apis mellifera) venom collected from electrical stimulation and manual extraction of the venom gland. BMC Genomics. 2013;14:766.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lockwood SA, HaghiPour-Peasley J, Hoffman DR, Deslippe RJ. Identification, expression, and immune-reactivity of Sol I 2 & Sol I 4 proteins of queen red imported fire ants, Solenopsis invicta Buren (Hymenoptera: Formicidae). Toxicon. 2012;60:752–9.  https://doi.org/10.1016/j.toxicon.2012.05.011.CrossRefPubMedGoogle Scholar
  42. MacGlashan DW. Basophil activation testing. J Allergy Clin Immunol. 2013;132:777–87.  https://doi.org/10.1016/j.jaci.2013.06.038.CrossRefPubMedGoogle Scholar
  43. Matuszek MA, Hodgson WC, King RG, Sutherland SK. Some enzymatic activities of two Australian ant venoms: a jumper ant Myrmecia pilosula and a bulldog ant Myrmecia pyriformis. Toxicon. 1994;32:1543–9.CrossRefPubMedGoogle Scholar
  44. Matuszek MA, Hodgson WC, Sutherland SK, King RG. Pharmacological studies of jumper ant (Myrmecia pilosula) venom: evidence foe the presence of histamine, and haemolytic and eicosanoid-releaseing factors. Toxicon. 1992;30:1081–91.CrossRefPubMedGoogle Scholar
  45. Matysiak J, Hajduk J, Pietrzak L, Schmelzer CEH, Kokot ZJ. Shotgun proteome analysis of honeybee venom using targeted enrichment strategies. Toxicon. 2014;90:255–64.  https://doi.org/10.1016/j.toxicon.2014.08.069.CrossRefPubMedGoogle Scholar
  46. McGain F, Harrison J, Winkel KD. Wasp sting mortality in Australia. Med J Aust. 2000;173:198–200.PubMedGoogle Scholar
  47. McGain F, Winkel KD. Ant sting mortality in Australia. Toxicon. 2002;40:1095–100.CrossRefPubMedGoogle Scholar
  48. Mitra A. Function of the Dufour’s gland in solitary and social hymenoptera. J Hymenopt Res. 2013;35:33–58.  https://doi.org/10.3897/JHR.35.4783.CrossRefGoogle Scholar
  49. Moreau SJM, Asgari S. Venom proteins from parasitoid wasps and their biological functions. Toxins. 2015;7:2385–412.  https://doi.org/10.3390/toxins7072385.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Moreno M, Girault E. Three valuable peptides from be and wasp venoms for therapeutic and biotechnological use: melittin, apamin and mastoparan. Toxins. 2015;7:1126–50.  https://doi.org/10.3390/toxins7041126.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Müller UR. Bee venom allergy in beekeepers and their family members. Curr Opin Allergy Clin Immunol. 2005;5:343–7.CrossRefPubMedGoogle Scholar
  52. Padavattan S, Schmidt M, Hoffman DR, Marković-Housley Z. Crystal structure of the major allergen from fire ant venom, Sol i 3. J Mol Biol. 2008;383:178–85.  https://doi.org/10.1016/j.jmb.2008.08.023.CrossRefPubMedGoogle Scholar
  53. Prahlow JA, Barnard JJ. Fatal anaphylaxis to fire ant stings. Am J Forensic Med Pathol. 1998;19:137–42.CrossRefPubMedGoogle Scholar
  54. Pursley RE. Stinging Hymenoptera. Am Bee J. 1973;113:131–2.Google Scholar
  55. Simons FE, Roberts JR, Gu X, Simons KJ. Epinephrine absorption in children with a history of anaphylaxis. J Allergy Clin Immunol. 1998;101:33–7.CrossRefPubMedGoogle Scholar
  56. Solley GO, Vanderwoude C, Knight GK. Anaphylaxis due to red imported fire ant sting. Med J Aust. 2002;176:521–3.PubMedGoogle Scholar
  57. Street MD, Donovan GR, Baldo BA. Molecular cloning and characterization of the major allergen Myr p II from the venom of the jumper ant Myrmecia pilosula: Myr p I and Myr p II share a common protein leader sequence. Biochem Biophys Acta. 1996;1305:87–97.PubMedGoogle Scholar
  58. Touchard A, Aili SR, Fox EGP, et al. The biochemical toxin arsenal from ant venoms. Toxins. 2016;8:1.CrossRefGoogle Scholar
  59. Van Vaerenbergh M, Debyser G, Devreese B, de Graaf DC. Exploring the hidden honeybee (Apis mellifera) venom proteome by integrating a combinatorial peptide ligand library approach with FTMS. J Proteome. 2014;99:169–78.  https://doi.org/10.1016/jprot.2013.04.039.CrossRefGoogle Scholar
  60. Visscher PK, Vetter RS, Camazine S. Removing bee stings. Lancet. 1996;348:301–2.CrossRefPubMedGoogle Scholar
  61. Wanandy T, Gueven N, Davis NW, Brown SGA, Wiese MD. Pilosulins: a review of the structure and mode of action of venom from an Australian ant Myrmecia pilosula. Toxicon. 2015;98:54–61.  https://doi.org/10.1016/j.toxicon.2015.02.013.CrossRefPubMedGoogle Scholar
  62. Wanstall JC, De La Lande IS. Fractionation of bulldog ant venom. Toxicon. 1974;12:649–55.CrossRefPubMedGoogle Scholar
  63. Welton RE, Williams DJ, Liew D. Injury trends from envenoming in Australia, 2000–2013. Intern Med J. 2017;47:170–6.  https://doi.org/10.1111/imj.13297.CrossRefPubMedGoogle Scholar
  64. Wiese MD, Brown SGA, Chataway TK, et al. Myrmecia pilosula (Jack jumper) ant venom: identification of allergens and revised nomenclature. Allergy. 2007;62:437–43.  https://doi.org/10.1111/j.1398-9995.2007.01320.x.CrossRefPubMedGoogle Scholar
  65. Wiese MD, Chataway TK, Davies NW, et al. Proteomic analysis of Myrmecia pilosula (jack jumper) ant venom. Toxicon. 2006;47:2018–7.CrossRefGoogle Scholar
  66. Wiese MD, Milne RW, Davies NW, Chataway TK, Brown SGA, Heddle RJ. Myrmecia pilosula (Jack jumper) ant venom: validation of a procedure to standardize an allergy vaccine. J Pharm Biomed Anal. 2008;46:58–65.  https://doi.org/10.1016/j.jpba.2007.08.028.CrossRefPubMedGoogle Scholar
  67. Winkel KD, Bordeaux S, Harrison J, Levick NR. European wasps: an emerging health hazard in Australia. 4th International Hymenopterists Conference, Canberra, Jan 1991; 1999.Google Scholar
  68. Wu QX, King MA, Donovan GR, et al. Cytotoxicity of pilosulin 1, a peptide from the venom of the jumper ant Myrmecia pilosula. Biochim Biophys Acta. 1998;1425:74–80.CrossRefPubMedGoogle Scholar
  69. Xuan BH, Mai HL, Thi TX, Nguyen HN, Rabenou RA. Swarming hornet attacks: shock and acute kidney injury – a large case series from Vietnam. Nephrol Dial Transplant. 2010;25:1146–50.CrossRefPubMedGoogle Scholar
  70. Zelezetsky I, Pag U, Antcheva N, Sahl HG, Tossi A. Identification abd optimization of an antimicrobial peptide from the ant venom toxin pilosulin. Arch Biochem Biophys. 2005;434:358–64. http://www.bbcm.univ.trieste.it/-tossi/antimic.htmlCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Intensive Care Unit, The Royal Children’s HospitalThe University of MelbourneMelbourneAustralia

Personalised recommendations