Snakebite Envenoming in Latin America and the Caribbean

  • José María Gutiérrez
Reference work entry
Part of the Toxinology book series (TOXI)


Envenomings induced by snakebites constitute a serious public health problem in Latin America. This condition affects predominantly vulnerable rural populations and has a high impact in regions where the provision of health services is deficient. Most envenomings are provoked by species of the genera Bothrops and Crotalus, classified in the family Viperidae, whereas about 1% of cases are due to Micrurus species (family Elapidae). There are laboratories in several countries in the region which manufacture antivenoms. Scientific and biotechnological research has generated a significant body of knowledge on snakes and their venoms and on antivenoms. Despite important advances in the control of these envenomings in Latin America, it is necessary to strengthen regional efforts in order to (a) improve the knowledge on snakes and their venoms; (b) acquire information on the incidence and mortality of snakebite envenomings; (c) increase the volume of antivenom produced and, in some cases, the quality of antivenoms; (d) improve the regulatory work of national quality control laboratories; (e) develop knowledge-based strategies of distribution of antivenoms; (f) consolidate continuous education programs for the health staff in charge of the treatment of these envenomings; (g) ensure support to people that suffer physical or psychological sequelae as a consequence of these envenomings; and (h) strengthen community programs aimed at improving the prevention and adequate management of snakebites. The development of inter-programmatic and inter-sectorial projects in this field should be promoted in the region, involving multiple actors and institutions, within a frame of regional cooperation programs.


  1. Alape-Girón A, Sanz L, Escolano J, Flores-Díaz M, Madrigal M, Sasa M, Calvete JJ. Snake venomics of the lancehead pitviper Bothrops asper: geographic, individual, and ontogenetic variations. J Proteome Res. 2008;7(8):3556–71.CrossRefPubMedGoogle Scholar
  2. Azevedo-Marques MM, Hering SE, Cupo P. Acidente crotálico. In: Cardoso JLC, França FOS, Wen FH, Málaque CMS, Haddad Jr V, editors. Animais Peçonhentos no Brasil. Biologia, Clínica e Terapêutica dos Acidentes. 2nd ed. São Paulo: Sarvier; 2009.Google Scholar
  3. Bogarín G, Morais JF, Yamaguchi IK, Stephano MA, Marcelino JR, Nishikawa AK, Guidolin R, Rojas G, Higashi HG, Gutiérrez JM. Neutralization of crotaline snake venoms from Central and South America by antivenoms produced in Brazil and Costa Rica. Toxicon. 2000;38:1429–41.CrossRefPubMedGoogle Scholar
  4. Bon C. Multicomponent neurotoxic phospholipases A2. In: Kini RM, editor. Venom phospholipase A2 enzymes: structure, function and mechanism. Chichester: Wiley; 1997.Google Scholar
  5. Calvete JJ. Proteomic tools against the neglected pathology of snake bite envenoming. Expert Rev Proteomics. 2011;8:739–58.CrossRefPubMedGoogle Scholar
  6. Calvete JJ, Sanz L, Cid P, de la Torre P, Flores-Díaz M, dos Santos MC, Borges A, Bremo A, Angulo Y, Lomonte B, Alape-Girón A, Gutiérrez JM. Snake venomics of the Central American rattlesnake Crotalus simus and the South American Crotalus durissus complex points to neurotoxicity as an adaptive paedomorphic trend along Crotalus dispersal in South America. J Proteome Res. 2010;9:528–44.CrossRefPubMedGoogle Scholar
  7. Camey KU, Velarde DT, Sanchez EF. Pharmacological characterization and neutralization of the venoms used in the production of Bothropic antivenom in Brazil. Toxicon. 2002;40:501–9.CrossRefPubMedGoogle Scholar
  8. Cardoso JL, Fan HW, França FOS, Jorge MT, Leite RP, Nishioka SA, Avila A, Sano-Martins IS, Tomy SC, Santoro ML, Chudzinski AM, Castro SCB, Kamiguti AS, Kelen EMA, Hirata MH, Mirandola RMS, Theakston RDG, Warrell DA. Randomized comparative trial of three antivenoms in the treatment of envenoming by lance-headed vipers (Bothrops jararaca) in Sao Paulo, Brazil. Q J Med. 1993;86:315–25.PubMedGoogle Scholar
  9. Cardoso JLC, França FOS, Wen FH, Málaque CMS, Haddad Jr V. Animais Peçonhentos no Brasil. Biologia, Clínica e Terapêutica dos Acidentes. 2nd ed. São Paulo: Sarvier; 2009.Google Scholar
  10. Colombini M, Fernandes I, Cardoso DF, Moura-da-Silva AM. Lachesis muta muta venom: immunological differences compared with Bothrops atrox venom and importance of specific antivenom therapy. Toxicon. 2001;39:711–9.CrossRefPubMedGoogle Scholar
  11. Corrêa-Neto C, Junqueira-de Azevedo IL, Silva DA, Ho PL, Leitao-de-Araújo M, Alves ML, Sanz L, Foguel D, Zingali RB, Calvete JJ. Snake venomics and venom gland transcriptomic analysis of Brazilian coral snakes, Micrurus altirostris and M. corallinus. J Proteomics. 2011;74:1795–809.CrossRefGoogle Scholar
  12. da Silva NJ, Bucaretchi F. Mecanismo de ação do veneno elapídico e aspectos clínicos dos accidentes. In: Cardoso JLC, França FOS, Wen FH, Málaque CMS, Haddad Jr V, editors. Animais Peçonhentos no Brasil. Biologia, Clínica e Terapêutica dos Acidentes. 2nd ed. São Paulo: Sarvier; 2009.Google Scholar
  13. de Oliveira RC, Wen FH, Sifuentes DN. Epidemiologia dos accidentes por animais peçonhentos. In: Cardoso JLC, França FOS, Wen FH, Málaque CMS, Haddad Jr V, editors. Animais Peçonhentos no Brasil. Biologia, Clínica e Terapêutica dos Acidentes. 2nd ed. São Paulo: Sarvier; 2009.Google Scholar
  14. de Roodt A, Dolab JA, Fernández T, Segre L, Hajos EE. Cross-reactivity and heterologous neutralisation of crotaline antivenoms used in Argentina. Toxicon. 1998;36:1025–38.CrossRefPubMedGoogle Scholar
  15. Gopalakrishnakone P, Dempster DW, Hawgood BJ, Elder HY. Cellular and mitochondrial changes induced in the structure of murine skeletal muscle by crotoxin, a neurotoxic phospholipase A2 complex. Toxicon. 1984;22:85–98.CrossRefPubMedGoogle Scholar
  16. Gutiérrez JM. Snakebite envenomation in Central America. In: Mackessy SP, editor. Handbook of venoms and toxins of reptiles. Boca Raton: CRC Press; 2010.Google Scholar
  17. Gutiérrez JM. Envenenamientos por mordeduras de serpientes en América Latina y el Caribe: Una visión integral de carácter regional. Boletín de Malariología y Salud Ambiental. 2011;51:1–16.Google Scholar
  18. Gutiérrez JM, Lomonte B. Efectos locales en el envenenamiento ofídico en América Latina. In: Cardoso JLC, França FOS, Wen FH, Málaque CMS, Haddad Jr V, editors. Animais Peçonhentos no Brasil. Biologia, Clínica e Terapêutica dos Acidentes. 2nd ed. São Paulo: Sarvier; 2009.Google Scholar
  19. Gutiérrez JM, Higashi HG, Wen FH, Burnouf T. Strengthening antivenom production in Central and South American public laboratories: report of a workshop. Toxicon. 2007;49:30–5.CrossRefPubMedGoogle Scholar
  20. Gutiérrez JM, Lomonte B, León G, Alape-Girón A, Flores-Díaz M, Sanz L, Angulo Y, Calvete JJ. Snake venomics and antivenomics: proteomic tools in the design and control of antivenoms for the treatment of snakebite envenoming. J Proteomics. 2009a;72:165–82.CrossRefPubMedGoogle Scholar
  21. Gutiérrez JM, Fan HW, Silvera CL, Angulo Y. Stability, distribution and use of antivenoms for snakebite envenomation in Latin America: report of a workshop. Toxicon. 2009b;53:625–30.CrossRefPubMedGoogle Scholar
  22. Gutiérrez JM, Williams D, Fan HW, Warrell DA. Snakebite envenoming from a global perspective: towards an integrated approach. Toxicon. 2010a;56:1223–35.CrossRefPubMedGoogle Scholar
  23. Gutiérrez JM, Rucavado A, Escalante T. Snake venom metalloproteinases. Biological roles and participation in the pathophysiology of envenomation. In: Mackessy SP, editor. Handbook of venoms and toxins of reptiles. Boca Raton: CRC Press; 2010b.Google Scholar
  24. Gutiérrez JM, León G, Lomonte B, Angulo Y. Antivenoms for snakebite envenomings. Inflamm Allergy Drug Targets. 2011;10:369–80.CrossRefPubMedGoogle Scholar
  25. Gutiérrez JM, Solano G, Pla D, Herrera M, Segura Á, Villalta M, Vargas M, Sanz L, Lomonte B, Calvete JJ. Assessing the preclinical efficacy of antivenoms: from the lethality neutralization assay to antivenomics. Toxicon. 2013;69:168–79.CrossRefPubMedGoogle Scholar
  26. Hansson E, Sasa M, Mattisson K, Robles A, Gutiérrez JM. Using geographical information systems to identify populations in need of improved accessibility to antivenom treatment for snakebite envenoming in Costa Rica. PLoS Negl Trop Dis. 2013;7:e2009.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Harrison RA, Hargreaves A, Wagstaff SC, Faraguer B, Lalloo DG. Snake envenoming: a disease of poverty. PLoS Negl Trop Dis. 2009;3:e569.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A, Premaratna R, Savioli L, Lalloo DG, de Silva HJ. The global burden of snakebite: a literature analysis and modeling based on regional estimates of envenoming and deaths. PLoS Negl Trop Dis. 2008;5:e218.Google Scholar
  29. Leynaud GC, Reati GJ. Identificación de las zonas de riesgo ofídico en Córdoba, Argentina, mediante el programa SIGEpi. Rev Panam Salud Publica. 2009;26:64–9.CrossRefPubMedGoogle Scholar
  30. Madrigal M, Sanz L, Flores-Díaz M, Sasa M, Núñez V, Alape-Girón A, Calvete JJ. Snake venomics across genus Lachesis. Ontogenetic changes in the venom composition of Lachesis stenophrys and comparative proteomics of the venoms of adult Lachesis melanocephala and Lachesis acrochorda. J Proteomics. 2012;77:280–97.CrossRefPubMedGoogle Scholar
  31. Otero R, Gutiérrez JM, Rojas G, Núñez V, Díaz A, Miranda E, Uribe AF, Silva JF, Ospina JG, Medina Y, Toro MF, García ME, León G, García M, Lizano S, de la Torre J, Márquez J, Mena Y, González N, Arenas LC, Puzón A, Blanco N, Sierra A, Espinal ME, Arboleda M, Jiménez JC, Ramírez P, Díaz M, Guzmán MC, Barros J, Henao S, Ramírez A, Macea U, Lozano R. A randomized blinded clinical trial of two antivenoms, prepared by caprylic acid or ammonium sulphate fractionation of IgG in Bothrops and Porthidium snake bites in Colombia: correlation between safety and biochemical characteristics of antivenoms. Toxicon. 1999;37:895–908.CrossRefPubMedGoogle Scholar
  32. Otero R, Gutiérrez J, Mesa MB, Duque E, Rodriguez O, Arrange JL, Gómez F, Toro A, Cano F, Rodriguez LM, Caro E, Martínez J, Cornejo W, Gómez LM, Uribe FL, Cárdenas S, Núñez V, Díaz A. Complications of Bothrops, Porthidium, and Bothriechis snakebites in Colombia. A clinical and epidemiological study of 39 cases attended in a university hospital. Toxicon. 2002;40:1107–14.CrossRefPubMedGoogle Scholar
  33. Otero-Patiño R. Epidemiological, clinical and therapeutic aspects of Bothrops asper bites. Toxicon. 2009;54:998–1011.CrossRefPubMedGoogle Scholar
  34. Otero-Patiño R, Cardoso JLC, Higashi HG, Núñez V, Díaz A, Toro MF, García ME, Sierra A, García LF, Moreno AM, Medina MC, Castañeda N, Silva-Díaz JF, Murcia M, Cárdenas SY, Dias-da-Silva W. A randomized, blinded, comparative trial of one pepsin-digested and two whole IgG antivenoms for Bothrops snake bites in Uraba, Colombia. Am J Trop Med Hyg. 1998;58:183–9.CrossRefPubMedGoogle Scholar
  35. Prado-Franceschi J, Hyslop S. South American colubrid envenomations. J Toxicol Toxin Rev. 2002;21:117–58.CrossRefGoogle Scholar
  36. Rojas G, Jiménez JM, Gutiérrez JM. Caprylic acid fractionation of hyperimmune horse plasma: description of a simple procedure for antivenom production. Toxicon. 1994;32:351–63.CrossRefPubMedGoogle Scholar
  37. Rucavado A, Soto M, Kamiguti AS, Theakston RDG, Fox JW, Escalante T, Gutiérrez JM. Characterization of aspercetin, a platelet aggregating component from the venom of the snake Bothrops asper which induces thrombocytopenia and potentiates metalloproteinase-induced hemorrhage. Thromb Haemost. 2001;85:710–5.CrossRefPubMedGoogle Scholar
  38. Saravia P, Rojas E, Arce V, Guevara C, López JC, Chaves E, Velásquez R, Rojas G, Gutiérrez JM. Geographic and ontogenic variability in the venom of the neotropical rattlesnake Crotalus durissus: pathophysiological and therapeutic implications. Rev Biol Trop. 2002;50:337–46.PubMedGoogle Scholar
  39. Sasa M, Vázquez S. Snakebite envenomation in Costa Rica: a revision of incidence in the decade 1990–2000. Toxicon. 2003;41:19–22.CrossRefPubMedGoogle Scholar
  40. Segura A, Herrera M, González E, Vargas M, Solano G, Gutiérrez JM, León G. Stability of equine IgG antivenoms obtained by caprylic acid precipitation: towards a liquid formulation stable at tropical room temperature. Toxicon. 2009;53:609–15.CrossRefPubMedGoogle Scholar
  41. Segura A, Castillo MC, Núñez V, Yarlequé A, Gonçalves LRC, Villalta M, Bonilla C, Herrera M, Vargas M, Fernández M, Yano MY, Araújo HP, Boller MA, León P, Tintaya B, Sano-Martins IS, Gómez A, Fernández GP, Geoghegan P, Higashi HG, León G, Gutiérrez JM. Preclinical assessment of the neutralizing capacity of antivenoms produced in six Latin American countries against medically-relevant Bothrops snake venoms. Toxicon. 2010;56:980–9.CrossRefPubMedGoogle Scholar
  42. Serrano SM, Maroun RC. Snake venom serine proteinases: sequence homology vs. substrate specificity, a paradox to be solved. Toxicon. 2005;45:1115–32.CrossRefPubMedGoogle Scholar
  43. Teixeira C, Cury Y, Moreira V, Picolo G, Chaves F. Inflammation induced by Bothrops asper venom. Toxicon. 2009;54:988–97.CrossRefPubMedGoogle Scholar
  44. Thomas L, Tyburn B. Research group on snake bite in Martinique. Bothrops lanceolatus bites in Martinique: clinical aspects and treatment. In: Bon C, Goyffon M, editors. Envenomings and their treatments. Lyon: Fondation Marcel Mérieux; 1996.Google Scholar
  45. Tu AT, Lin TS, Bieber L. Purification and chemical characterization of the major neurotoxin from the venom of Pelamis platurus. Biochemistry. 1975;14:3408–13.CrossRefPubMedGoogle Scholar
  46. Warrell DA. Snakebites in Central and South America: epidemiology, clinical features, and clinical management. In: Campbell JA, Lamar WW, editors. The venomous reptiles of the western hemisphere, vol. I. Ithaca: Cornell University Press; 2004.Google Scholar
  47. Williams D, Gutiérrez JM, Harrison R, Warrell DA, White J, Winkel KD, Gopalakrishnakone P. The Global Snake Bite Initiative: an antidote for snake bite. Lancet. 2010;375:89–91.CrossRefPubMedGoogle Scholar
  48. Williams SS, Wijesinghe CA, Jayamanne SF, Buckley NA, Dawson AH, Lalloo DG, de Silva HJ. Delayed psychological morbidity associated with snakebite envenoming. PLoS Negl Trop Dis. 2011;5:e1255.CrossRefPubMedPubMedCentralGoogle Scholar
  49. World Health Organization. Guidelines for the production, control and regulation of snake antivenom immunoglobulins. Geneva: WHO; 2010. Available from: Scholar
  50. Zelanis A, Tashima AK, Pinto AF, Leme AF, Stuginski DR, Furtado MFD, Sherman NE, Ho PL, Fox JW, Serrano SMT. Bothrops jararaca venom proteome rearrangement upon neonate to adult transition. Proteomics. 2011;11:4218–28.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Facultad de Microbiología, Instituto Clodomiro PicadoUniversidad de Costa RicaSan JoséCosta Rica

Personalised recommendations