Skip to main content

Ceramides and Ceramide-1-Phosphates in Plants: Functional Diversity of

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Lipidomics
  • 139 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

HPLC/ESI-MS/MS:

High-performance liquid chromatography/electrospray ionization tandem mass spectrometry

PCD:

Programmed cell death

SAT:

Sphinganine N-acyltransferase

UDP:

Uridine diphosphate

VLCFAs:

Very long-chain fatty acids

References

  • Berkey R, Bendigeri D, Xiao S. Sphingolipids and plant defense/disease: the “death” connection and beyond. Front Plant Sci. 2012;3:68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buré C, Cacas JL, Mongrand S, Schmitter JM. Characterization of glycosyl inositol phosphoryl ceramides from plants and fungi by mass spectrometry. Anal Bioanal Chem. 2014;406(4):995–1010.

    Article  PubMed  Google Scholar 

  • Chen L-Y, Shi D-Q, Zhang W-J, Tang Z-S, Liu J, Yang W-C. The Arabidopsis alkaline ceramidase TOD1 is a key turgor pressure regulator in plant cells. Nat Commun. 2015;6:6030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • König S, Feussner K, Schwarz M, Kaever A, Iven T, Landesfeind M, et al. Arabidopsis mutants of sphingolipid fatty acid α-hydroxylases accumulate ceramides and salicylates. New Phytol. 2012;196(4): 1086–97.

    Article  PubMed  Google Scholar 

  • Li J, Bi F-C, Yin J, Wu J-X, Rong C, Wu J-L, et al. An Arabidopsis neutral ceramidase mutant ncer1 accumulates hydroxyceramides and is sensitive to oxidative stress. Front Plant Sci. 2015;6:460.

    PubMed  PubMed Central  Google Scholar 

  • Luttgeharm KD, Chen M, Mehra A, Cahoon RE, Markham JE, Cahoon EB. Overexpression of arabidopsis ceramide synthases differentially affects growth, sphingolipid metabolism, programmed cell death, and mycotoxin resistance. Plant Physiol. 2015;169(2):1108–17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luttgeharm KD, Kimberlin AN, Cahoon EB. Plant sphingolipid metabolism and function. In: Nakamura Y, Li-Beisson Y, editors. Lipids in plant and algae development. Cham: Springer International Publishing; 2016. p. 249–86.

    Chapter  Google Scholar 

  • Lynch DV, Dunn TM. An introduction to plant sphingolipids and a review of recent advances in understanding their metabolism and function. New Phytol. 2004;161(3):677–702.

    Article  CAS  Google Scholar 

  • Markham JE, Jaworski JG. Rapid measurement of sphingolipids from Arabidopsis thaliana by reversed-phase high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom. 2007;21(7): 1304–14.

    Article  CAS  PubMed  Google Scholar 

  • Michaelson LV, Napier JA, Molino D, Faure J-D. Plant sphingolipids: their importance in cellular organization and adaption. Biochim Biophys Acta. 2016;1861(9, Part B):1329–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagano M, Takahara K, Fujimoto M, Tsutsumi N, Uchimiya H, Kawai-Yamada M. Arabidopsis sphingolipid fatty acid 2-hydroxylases (AtFAH1 and AtFAH2) are functionally differentiated in fatty acid 2-hydroxylation and stress responses. Plant Physiol. 2012;159(3):1138–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pata MO, Hannun YA, Ng CK-Y. Plant sphingolipids: decoding the enigma of the Sphinx. New Phytol. 2010;185(3):611–30.

    Article  CAS  PubMed  Google Scholar 

  • Sperling P, Heinz E. Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochim Biophys Acta. 2003;1632(1–3):1–15.

    CAS  PubMed  Google Scholar 

  • Ternes P, Feussner K, Werner S, Lerche J, Iven T, Heilmann I, et al. Disruption of the ceramide synthase LOH1 causes spontaneous cell death in Arabidopsis thaliana. New Phytol. 2011;192(4):841–54.

    Article  CAS  PubMed  Google Scholar 

  • Wu J-X, Li J, Liu Z, Yin J, Chang Z-Y, Rong C, et al. The Arabidopsis ceramidase AtACER functions in disease resistance and salt tolerance. Plant J. 2015;81(5): 767–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Herrfurth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V.

About this entry

Cite this entry

Herrfurth, C. (2018). Ceramides and Ceramide-1-Phosphates in Plants: Functional Diversity of. In: Wenk, M. (eds) Encyclopedia of Lipidomics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7864-1_157-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7864-1_157-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7864-1

  • Online ISBN: 978-94-007-7864-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics