Skip to main content

Lipid Composition of the Model Diatom Phaeodactylum tricornutum

  • Living reference work entry
  • First Online:
Encyclopedia of Lipidomics

Synonyms

Lipid droplet; Lipid bodies; Oil bodies; Triacylglycerols; Triacylglycerides; Triglycerides

Definitions

Oleaginous algae:

algae with a potential to produce more than 20 % of oil per dry weight

Diatoms:

unicellular photosynthetic microalgae which arose from a secondary endosymbiosis and whose cell walls contain silica

Pleomorphism:

cells occur in different sizes and different shapes

Phaeodactylum tricornutum is a marine diatom of the class Bacillariophyceae (Table 1). Diatoms are the main constituents of phytoplankton and thought to be responsible for one fifth of the global carbon fixation (Hildebrand et al. 2012). They are special because they harbor a combination of plant- and animal-like characteristics (Hildebrand et al. 2012; Liu and Benning 2013). This might be the case because they originate from a secondary endosymbiosis between a heterotrophic eukaryote and a red alga (Hildebrand et al. 2012; Falkowski et al. 2004; Hockin et al. 2012). Phaeodactylumis described as a...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ASQ:

20:5-acyl-sulfoquinovosyldiacylglycerol

DAG:

diacylglycerol

DGDG:

digalactosyldiacylglycerol

DGTA:

diacylglyceryl-hydroxy-methyl-N,N,N-trimethyl-β-alanine

DGTS:

diacylglycerol-N,N,N-trimethylhomoserine

MGDG:

monogalactosyldiacylglycerol

PA:

phosphatidic acid

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PG:

phosphatidylglycerol

PI:

phosphatidylinositol

PS:

phosphatidylserine

SQDG:

sulfoquinovosyldiacylglycerol

TAG:

triacylglycerol

References

  • Abida H, Dolch L-J, Mei C, Villanova V, Conte M, Block MA, et al. Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum. Plant Physiol. 2015;167:118–36.

    Article  CAS  PubMed  Google Scholar 

  • Alipanah L, Rohloff J, Winge P, Bones AM, Brembu T. Whole-cell response to nitrogen deprivation in the diatom Phaeodactylum tricornutum. J Exp Bot. 2015;66(20):6281–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen AE, LaRoche J, Maheswari U, Lommer M, Schauer N, Lopez PJ, et al. Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proc Natl Acad Sci USA. 2008;105(30):10438–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso DL, Belarbi E-H, Rodríguez-Ruiz J, Segura CI, Giménez A. Acyl lipids of three microalgae. Phytochemistry. 1998;47(8):1473–81.

    Article  Google Scholar 

  • Alonso DL, Belarbi E-H, Fernández-Sevilla JM, Rodríguez-Ruiz J, Grima EM. Acyl lipid composition variation related to culture age and nitrogen concentration in continuous culture of the microalga Phaeodactylum tricornutum. Phytochemistry. 2000;54(5):461–71.

    Article  CAS  PubMed  Google Scholar 

  • Borowitzka MA, Moheimani NR. Sustainable biofuels from algae. Mitig Adapt Strateg Glob Chang. 2013;18(1):13–25.

    Article  Google Scholar 

  • Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature. 2008;456(7219):239–44.

    Article  CAS  PubMed  Google Scholar 

  • Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH. The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresour Technol. 2012;124(0):217–26.

    Article  CAS  PubMed  Google Scholar 

  • Cañavate JP, Armada I, Ríos JL, Hachero-Cruzado I. Exploring occurrence and molecular diversity of betaine lipids across taxonomy of marine microalgae. Phytochemistry. 2016;124:68–78.

    Article  PubMed  Google Scholar 

  • Chauton MS, Winge P, Brembu T, Vadstein O, Bones AM. Gene regulation of carbon fixation, storage, and utilization in the diatom Phaeodactylum tricornutum acclimated to light/dark cycles. Plant Physiol. 2013;161(2):1034–48.

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25(3):294–306.

    Article  CAS  PubMed  Google Scholar 

  • De Martino A, Meichenin A, Shi J, Pan K, Bowler C. Genetic and phenotypic characterization of Phaeodactylum tricornutum (Bacillariophyceae) accessions. J Phycol. 2007;43(5):992–1009.

    Article  CAS  Google Scholar 

  • Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, et al. The evolution of modern eukaryotic phytoplankton. Science. 2004;305(5682):354–60.

    Article  CAS  PubMed  Google Scholar 

  • Goold H, Beisson F, Peltier G, Li-Beisson Y. Microalgal lipid droplets: composition, diversity, biogenesis and functions. Plant Cell Rep. 2015;34(4):545–55.

    Article  CAS  PubMed  Google Scholar 

  • Guschina IA, Harwood JL. Algal lipids and their metabolism. In: Algae for biofuels and energy. Dordrecht: Springer; 2013. p. 17–36.

    Chapter  Google Scholar 

  • Hildebrand M, Davis AK, Smith SR, Traller JC, Abbriano R. The place of diatoms in the biofuels industry. Biofuels. 2012;3(2):221–40.

    Article  CAS  Google Scholar 

  • Hockin NL, Mock T, Mulholland F, Kopriva S, Malin G. The response of diatom central carbon metabolism to nitrogen starvation Is different from that of green algae and higher plants. Plant Physiol. 2012;158(1):299–312.

    Article  CAS  PubMed  Google Scholar 

  • Li S, Xu J, Chen J, Chen J, Zhou C, Yan X. The major lipid changes of some important diet microalgae during the entire growth phase. Aquaculture. 2014;428:104–10.

    Article  Google Scholar 

  • Li-Beisson Y, Peltier G. Third-generation biofuels: current and future research on microalgal lipid biotechnology. OCL. 2013;20(6):D606.

    Article  Google Scholar 

  • Liu B, Benning C. Lipid metabolism in microalgae distinguishes itself. Curr Opin Biotechnol. 2013;24(2):300–9.

    Article  CAS  PubMed  Google Scholar 

  • Maheswari U, Montsant A, Goll J, Krishnasamy S, Rajyashri K, Patell VM, et al. The diatom EST database. Nucleic Acids Res. 2005;33(suppl 1):D344–D7.

    PubMed  Google Scholar 

  • Maheswari U, Mock T, Armbrust EV, Bowler C. Update of the Diatom EST Database: a new tool for digital transcriptomics. Nucleic Acids Res. 2009;37(suppl 1):D1001–D5.

    Article  CAS  PubMed  Google Scholar 

  • Michaelson LV, Markham JE, Zäeuner S, Matsumoto M, Chen M, Cahoon EB, et al. Identification of a cytochrome b5-fusion desaturase responsible for the synthesis of triunsaturated sphingolipid long chain bases in the marine diatom Thalassiosira pseudonana. Phytochemistry. 2013;90(0):50–5.

    Article  CAS  PubMed  Google Scholar 

  • Naumann I, Klein BC, Bartel SJ, Darsow KH, Buchholz R, Lange HA. Identification of sulfoquinovosyldiacyglycerides from Phaeodactylum tricornutum by matrix-assisted laser desorption/ionization QTrap time-of-flight hybrid mass spectrometry. Rapid Commun Mass Spectrom. 2011;25(17):2517–23.

    Article  CAS  PubMed  Google Scholar 

  • Rampen SW, Abbas BA, Schouten S, Damsté JSS. A comprehensive study of sterols in marine diatoms (Bacillariophyta): Implications for their use as tracers for diatom productivity. Limnol Oceanogr. 2010;55(1):91.

    Article  CAS  Google Scholar 

  • Sapriel G, Quinet M, Heijde M, Jourdren L, Tanty V, Luo G, et al. Genome-wide transcriptome analyses of silicon metabolism in Phaeodactylum tricornutum reveal the multilevel regulation of silicic acid transporters. PLoS One. 2009;4(10):e7458.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sayanova OV, Napier JA. Eicosapentaenoic acid: biosynthetic routes and the potential for synthesis in transgenic plants. Phytochemistry. 2004;65(2):147–58.

    Article  CAS  PubMed  Google Scholar 

  • Véron B, Billard C, Dauguet J-C, Hartmann M-A. Sterol composition ofPhaeodactylum tricornutum as influenced by growth temperature and light spectral quality. Lipids. 1996;31(9):989–94.

    Article  PubMed  Google Scholar 

  • Zaslavskaia LA, Lippmeier JC, Kroth PG, Grossman AR, Apt KE. Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes. J Phycol. 2000;36(2):379–86.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Popko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media B.V.

About this entry

Cite this entry

Popko, J. (2016). Lipid Composition of the Model Diatom Phaeodactylum tricornutum . In: Wenk, M. (eds) Encyclopedia of Lipidomics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7864-1_127-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7864-1_127-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-7864-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics