Skip to main content

Lipid Composition of Arabidopsis thaliana Leaves

  • Living reference work entry
  • First Online:
Encyclopedia of Lipidomics
  • 192 Accesses

Synonyms

Arabidopsis thaliana - thale cress

Definitions

Sulfolipids:

Lipids that contain sulfur in a functional group

Cutin:

Polymer matrix, which consists of esterified fatty acids that are hydroxylated or epoxy hydroxylated

Arabidopsis thaliana is a model organism for flowering plants, as it shows a close relationship to a high number of other plant species. Furthermore, its characteristics like small size, available genetic tools, and a short life cycle renders Arabidopsis a good organism to work with (Somerville and Koornneef 2002; Koornneef and Meinke 2010). Leaves are of special interest, since photosynthesis takes place in these organs (Li-Beisson et al. 2013). Leaves are thus the place of energy production, and different compounds from the central and specialized metabolism are synthesized in leaves. Since photosynthesis takes place within chloroplasts, biomembranes are of particular importance here and specific functions are assigned to lipids (Li-Beisson et al. 2013). Leaves...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

DGDG:

digalactosyldiacylglycerol

FW:

fresh weight

HPLC:

high-performance liquid chromatography

LC-MS/MS:

liquid chromatography coupled with tandem mass spectrometry

MGDG:

monogalactosyldiacylglycerol

PA:

phosphatidic acid

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PG:

phosphatidylglycerol

PI:

phosphatidylinositol

PS:

phosphatidylserine

SQDG:

sulfoquinovosyldiacylglycerol

SD:

standard deviation

SE:

standard error

References

  • Andersson MX, Dörmann P. Chloroplast membrane lipid biosynthesis and transport. In: The Chloroplast. Berlin: Springer; 2009. p. 125–58.

    Chapter  Google Scholar 

  • Browse J, Somerville C. Glycerolipids. In: Cold spring harbor monograph series. Plainview, NY: Cold Spring Harbor Laboratory Press; 27; 1994. p. 881–912.

    Google Scholar 

  • Devaiah SP, Roth MR, Baughman E, Li M, Tamura P, Jeannotte R, et al. Quantitative profiling of polar glycerolipid species from organs of wild-type Arabidopsis and a PHOSPHOLIPASE D[alpha]1 knockout mutant. Phytochemistry. 2006;67(17):1907–24.

    Google Scholar 

  • Dörmann P, Benning C. Galactolipids rule in seed plants. Trends Plant Sci. 2002;7(3):112–8.

    Article  PubMed  Google Scholar 

  • Heredia A. Biophysical and biochemical characteristics of cutin, a plant barrier biopolymer. Biochim Biophys Acta Gen Subj. 2003;1620(1–3):1–7.

    Article  CAS  Google Scholar 

  • Hisamatsu Y, Goto N, Hasegawa K, Shigemori H. Arabidopsides A and B, two new oxylipins from Arabidopsis thaliana. Tetrahedron Lett. 2003;44(29):5553–6.

    Article  CAS  Google Scholar 

  • Hisamatsu Y, Goto N, Sekiguchi M, Hasegawa K, Shigemori H. Oxylipins arabidopsides C and D from Arabidopsis thaliana. J Nat Prod. 2005;68(4):600–3.

    Article  CAS  PubMed  Google Scholar 

  • Kannangara R, Branigan C, Liu Y, Penfield T, Rao V, Mouille G, et al. The transcription factor WIN1/SHN1 regulates cutin biosynthesis in Arabidopsis thaliana. Plant Cell. 2007;19(4):1278–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koornneef M, Meinke D. The development of Arabidopsis as a model plant. Plant J. 2010;61(6):909–21.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Beisson F, Koo AJ, Molina I, Pollard M, Ohlrogge J. Identification of acyltransferases required for cutin biosynthesis and production of cutin with suberin-like monomers. Proc Natl Acad Sci USA. 2007;104(46):18339–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li-Beisson Y, Pollard M, Sauveplane V, Pinot F, Ohlrogge J, Beisson F. Nanoridges that characterize the surface morphology of flowers require the synthesis of cutin polyester. Proc Natl Acad Sci. 2009;106(51):22008–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, et al. Acyl-lipid metabolism. Arabidopsis Book. 2013: e0161. The American Society of Plant Biologists

    Google Scholar 

  • Lu C, Xin Z, Ren Z, Miquel M, Browse J. An enzyme regulating triacylglycerol composition is encoded by the ROD1 gene of Arabidopsis. Proc Natl Acad Sci. 2009;106(44):18837–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markham JE, Jaworski JG. Rapid measurement of sphingolipids from Arabidopsis thaliana by reversed-phase high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom. 2007;21(7):1304–14.

    Article  CAS  PubMed  Google Scholar 

  • Markham JE, Li J, Cahoon EB, Jaworski JG. Separation and identification of major plant sphingolipid classes from leaves. J Biol Chem. 2006;281(32):22684–94.

    Article  CAS  PubMed  Google Scholar 

  • Markham JE, Lynch DV, Napier JA, Dunn TM, Cahoon EB. Plant sphingolipids: function follows form. Curr Opin Plant Biol. 2013;16(3):350–7.

    Article  CAS  PubMed  Google Scholar 

  • Miquel M, Browse J. Arabidopsis mutants deficient in polyunsaturated fatty acid synthesis. Biochemical and genetic characterization of a plant oleoyl-phosphatidylcholine desaturase. J Biol Chem. 1992;267(3):1502–9.

    CAS  PubMed  Google Scholar 

  • Nawrath C. The biopolymers cutin and suberin. In: Somerville C, Meyerowitz E, editors. The Arabidopsis Book. Rockville: American Society of Plant Biologists; 2002. p. 1–14.

    Google Scholar 

  • Pata MO, Hannun YA, Ng CKY. Plant sphingolipids: decoding the enigma of the Sphinx. New Phytol. 2010;185(3):611–30.

    Article  CAS  PubMed  Google Scholar 

  • Pollard M, Beisson F, Li Y, Ohlrogge JB. Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci. 2008;13(5):236–46.

    Article  CAS  PubMed  Google Scholar 

  • Somerville C, Koornneef M. A fortunate choice: the history of Arabidopsis as a model plant. Nat Rev Genet. 2002;3(11):883–9.

    Article  CAS  PubMed  Google Scholar 

  • Welti R, Li W, Li M, Sang Y, Biesiada H, Zhou H-E, et al. Profiling membrane lipids in plant stress responses role of phospholipase Dα in freezing-induced lipid changes in Arabidopsis. J Biol Chem. 2002;277(35):31994–2002.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Popko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this entry

Cite this entry

Popko, J. (2017). Lipid Composition of Arabidopsis thaliana Leaves. In: Wenk, M. (eds) Encyclopedia of Lipidomics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7864-1_120-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7864-1_120-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7864-1

  • Online ISBN: 978-94-007-7864-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics