Skip to main content

Proteome of Human Urinary Exosomes in Diabetic Nephropathy

  • Reference work entry
  • First Online:
Biomarkers in Kidney Disease

Abstract

Diabetic kidney disease (DKD) is the major complication in diabetic patients, the leading cause of end-stage renal disease (ESRD), and main risk factor for cardiovascular disease (CVD). Its silent development, together with the lack of specific and early accessible indicators of renal damage, often results in a late diagnosis when kidney damage is irreversible. Omics approaches (genomics, proteomics, metabolomics) account with the advantage of investigating the molecular milieu as a whole, without preselection of potential targets. The complexity and wide range of concentration levels of biological fluids as plasma, serum, or urine makes difficult the discovery of novel markers of kidney disease progression, other than already known high-abundance molecules (e.g., albumin). Exosomes are microvesicles derived from kidney cells in contact with the urinary space with proven roles in RNA and protein transfer and cell–cell communication. Exosomes may directly reflect pathophysiological changes taking place in the damaged kidney, constituting a feasible alternative to the invasive biopsy. Once released into urine or plasma, exosomes can be isolated and thus represent a sub-proteome where molecular messengers are enriched. This chapter overviews the current panorama in the potential use of exosomes as a novel source of biomarkers able to improve DKD current diagnosis, patients’ risk stratification, and prognosis prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BP:

Blood pressure

CE:

Capillary electrophoresis

CKD:

Chronic kidney disease

CVD:

Cardiovascular disease

DIGE:

Difference gel electrophoresis

DN:

Diabetic nephropathy

DKD:

Diabetic kidney disease

ESRD:

End-stage renal disease

GC:

Gas chromatography

GFR:

Glomerular filtration rate

iTRAQ:

Isobaric tags for relative and absolute quantitation

LC:

Liquid chromatography

MALDI:

Matrix-assisted laser desorption/ionization

MS:

Mass spectrometry

MVB:

Multivesicular bodies

NTA:

Nanoparticle tracking analysis

RAS:

Renin–angiotensin system

SEC:

Size exclusion chromatography

SELDI-TOF:

Surface-enhanced laser desorption/ionization time-of-flight

TEM:

Transmission electron microscopy

THP:

Tamm–Horsfall protein

UAER:

Urinary albumin excretion rate

UC:

Ultracentrifugation

WB:

Western blotting

References

  • Ahn JM, Kim BG, Yu MH, et al. Identification of diabetic nephropathy-selective proteins in human plasma by multi-lectin affinity chromatography and LC-MS/MS. Proteomics Clin Appl. 2010;4:644–53.

    Article  CAS  PubMed  Google Scholar 

  • Alkhalaf A, Zurbig P, Bakker SJL, et al. Multicentric validation of proteomic biomarkers in urine specific for diabetic nephropathy. PLoS One. 2010;5:e13421.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alvarez ML, Khosroheidari M, Kanchi Ravi R, et al. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int. 2012;82:1024–32.

    Article  CAS  PubMed  Google Scholar 

  • Alvarez S, Suazo C, Boltansky A, et al. Urinary exosomes as a source of kidney dysfunction biomarker in renal transplantation. Transplant Proc. 2013;45:3719–23.

    Article  CAS  PubMed  Google Scholar 

  • Bakris GL. Recognition, pathogenesis, and treatment of different stages of nephropathy in patients with type 2 diabetes mellitus. Mayo Clin Proc. 2011;86:444–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barutta F, Tricarico M, Corbelli A, et al. Urinary exosomal microRNAs in incipient diabetic nephropathy. PLoS One. 2013;8:e73798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benito-Martin A, Ucero AC, Zubiri I, et al. Osteoprotegerin in exosome-like vesicles from human cultured tubular cells and urine. PLoS One. 2013;8:e72387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourderioux M, Nguyen-Khoa T, Chhuon C, et al. A new workflow for proteomic analysis of urinary exosomes and assessment in cystinuria patients. J Proteome Res. 2015;14(1):567–77. doi:10.1021/pr501003q. Epub 2014 Nov 12.

    Google Scholar 

  • Camussi G, Deregibus MC, Bruno S, et al. Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int. 2010;8:838–48.

    Article  Google Scholar 

  • Caramori ML, Fioretto P, Mauer M. Enhancing the predictive value of urinary albumin for diabetic nephropathy. J Am Soc Nephrol. 2006;17:339–52.

    Article  CAS  PubMed  Google Scholar 

  • Chen HH, Lai PF, Lan YF, et al. Exosomal ATF3 RNA attenuates pro-inflammatory gene MCP-1 transcription in renal ischemia-reperfusion. J Cell Physiol. 2014;229:1202–11.

    Article  CAS  PubMed  Google Scholar 

  • Cheruvanky A, Zhou H, Pisitkun T, et al. Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator. Am J Physiol Renal Physiol. 2007;92:F1657–61.

    Article  Google Scholar 

  • Choi DS, Kim DK, Kim YK, et al. Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics. 2013;13:1554–71.

    Article  CAS  PubMed  Google Scholar 

  • Cosme J, Liu PP, Gramolini AO. The cardiovascular exosome: current perspectives and potential. Proteomics. 2013;13:1654–9.

    Article  CAS  PubMed  Google Scholar 

  • de Boer IH, Rue TC, Hall YN, et al. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA. 2011;305:2532–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Denby L, Ramdas V, McBride MW, et al. miR-21 and miR-214 are consistently modulated during renal injury in rodent models. Am J Pathol. 2011;179:661–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dihazi H, Müller GA, Lindner S, et al. Characterization of diabetic nephropathy by urinary proteomic analysis: identification of a processed ubiquitin form as a differentially excreted protein in diabetic nephropathy patients. Clin Chem. 2007;53:1636–45.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez Fernandez B, Elewa U, Sanzchez-Niño MD, et al. 2012 update on diabetic kidney disease: the expanding spectrum, novel pathogenic insights and recent clinical trials. Minerva Med. 2012;103:219–34.

    CAS  PubMed  Google Scholar 

  • Fernández-Llama P, Khositseth S, Gonzales PA, et al. Tamm-Horsfall protein and urinary exosome isolation. Kidney Int. 2010;77:736–42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fugmann T, Borgia B, Révész C. Proteomic identification of vanin-1 as a marker of kidney damage in a rat model of type 1 diabetic nephropathy. Kidney Int. 2011;80:272–81.

    Article  CAS  PubMed  Google Scholar 

  • Gonzales PA, Pisitkun T, Hoffert JD, et al. Large-scale proteomics and phosphoproteomics of urinary exosomes. J Am Soc Nephrol. 2009;20:363–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzales PA, Zhou H, Pisitkun T, et al. Isolation and purification of exosomes in urine. Methods Mol Biol. 2010;641:89–99.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Calero L, Martin-Lorenzo M, Alvarez-Llamas G. Exosomes: a potential key target in cardio-renal syndrome. Front Immunol. 2014;5:465.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gray SP, Cooper ME. Alleviating the burden of diabetic nephropathy. Nat Rev Nephrol. 2011;7:71–3.

    Article  CAS  PubMed  Google Scholar 

  • Han LD, Xia JF, Liang QL, et al. Plasma esterified and non-esterified fatty acids metabolic profiling using gas chromatography-mass spectrometry and its application in the study of diabetic mellitus and diabetic nephropathy. Anal Chim Acta. 2011;689:85–91.

    Article  CAS  PubMed  Google Scholar 

  • Hansen HG, Overgaard J, Lajer M, et al. Finding diabetic nephropathy biomarkers in the plasma peptidome by high-throughput magnetic bead processing and MALDI-TOF-MS analysis. Proteomics Clin Appl. 2010;4:697–705.

    Article  CAS  PubMed  Google Scholar 

  • Harvey SJ, Jarad G, Cunningham J, et al. Podocyte-specific deletion of dicer alters cytoskeletal dynamics and causes glomerular disease. J Am Soc Nephrol. 2008;19:2150–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He M, Crow J, Roth M, et al. Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology. Lab Chip. 2014;14(19):3773–80. doi:10.1039/c4lc00662c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogan MC, Bakeberg JL, Gainullin VG, et al. Identification of biomarkers for PKD1 using urinary exosomes. J Am Soc Nephrol. 2015;26(7):1661–70. doi:10.1681/ASN.2014040354. Epub 2014 Dec 4.

    Google Scholar 

  • Ichii O, Otsuka-Kanazawa S, Horino T, et al. Decreased miR-26a expression correlates with the progression of podocyte injury in autoimmune glomerulonephritis. PLoS One. 2014;9:e110383.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jha JC, Jandeleit-Dahm KAM, Cooper ME. New insights into the use of biomarkers of diabetic nephropathy. Adv Chronic Kidney Dis. 2014;21:318–26.

    Article  PubMed  Google Scholar 

  • Jin J, Ku YH, Kim Y, et al. Differential proteome profiling using iTRAQ in microalbuminuric and normoalbuminuric type 2 diabetic patients. Exp Diabetes Res. 2012;2012:168602.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalani A, Mohan A, Godbole MM, et al. Wilm’s tumor-1 protein levels in urinary exosomes from diabetic patients with or without proteinuria. PLoS One. 2013;8:e60177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer HJ, Nguyen QD, Curhan G, et al. Renal insufficiency in the absence of albuminuria and retinopathy among adults with type 2 diabetes mellitus. JAMA. 2003;289:3273–7.

    Article  PubMed  Google Scholar 

  • Lv LL, Cao YH, Pan MM, et al. CD2AP mRNA in urinary exosome as biomarker of kidney disease. Clin Chim Acta. 2014;428:26–31.

    Article  CAS  PubMed  Google Scholar 

  • MacIsaac RJ, Ekinci EI, Jerums G. Markers of and risk factors for the development and progression of diabetic kidney disease. Am J Kidney Dis. 2014;63(S2):S39–62.

    Article  PubMed  Google Scholar 

  • Martin-Lorenzo M, Gonzalez-Calero L, Zubiri I, et al. Urine 2DE proteome analysis in healthy condition and kidney disease. Electrophoresis. 2014;35:2634–41.

    Article  CAS  PubMed  Google Scholar 

  • Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteomics. 2010;73:1907–20.

    Article  CAS  PubMed  Google Scholar 

  • Merchant ML, Perkins BA, Boratyn GM, et al. Urinary peptidome may predict renal function decline in type 1 diabetes and microalbuminuria. J Am Soc Nephrol. 2009;20:2065–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merchant ML, Niewczas M, Ficociello LH, et al. Plasma kininogen and kininogen fragments are biomarkers of progressive renal decline in type-1 diabetes. Kidney Int. 2013;83:1177–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miranda KC, Bond DT, McKee M, et al. Nucleic acids within urinary exosomes/microvesicles are potential biomarkers for renal disease. Kidney Int. 2010;78:191–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Molitch ME, Steffes M, Sun W, et al. Development and progression of renal insufficiency with and without albuminuria in adults with type 1 diabetes in the diabetes control and complications trial and the epidemiology of diabetes interventions and complications study. Diabetes Care. 2010;33:1536–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon PG, You S, Lee JE, et al. Urinary exosomes and proteomics. Mass Spectrom Rev. 2011a;30:1185–202.

    Article  CAS  PubMed  Google Scholar 

  • Moon PG, Lee JE, You S, et al. Proteomic analysis of urinary exosomes from patients of early IgA nephropathy and thin basement membrane nephropathy. Proteomics. 2011b;11:2459–75.

    Article  CAS  PubMed  Google Scholar 

  • Papale M, di Paolo S, Magistroni R, et al. Urine proteome analysis may allow noninvasive differential diagnosis of diabetic nephropathy. Diabetes Care. 2010;33:2409–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park CW. Diabetic kidney disease: from epidemiology to clinical perspectives. Diabetes Metab J. 2014;38:252–60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pena MJ, Lambers Heerspink HJ, Hellemons ME, et al. Urine and plasma metabolites predict the development of diabetic nephropathy in individuals with Type 2 diabetes mellitus. Diabet Med. 2014;31:1138–47.

    Article  CAS  PubMed  Google Scholar 

  • Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A. 2004;101:13368–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raimondo F, Corbetta S, Morosi L, et al. Urinary exosomes and diabetic nephropathy: a proteomic approach. Mol Biosyst. 2013a;9:1139–46.

    Article  CAS  PubMed  Google Scholar 

  • Raimondo F, Morosi L, Corbetta S, et al. Differential protein profiling of renal cell carcinoma urinary exosomes. Mol Biosyst. 2013b;9:1220–33.

    Article  CAS  PubMed  Google Scholar 

  • Raj DA, Fiume I, Capasso G, et al. A multiplex quantitative proteomics strategy for protein biomarker studies in urinary exosomes. Kidney Int. 2012;81:1263–72.

    Article  CAS  PubMed  Google Scholar 

  • Rood IM, Deegens JK, Merchant ML, et al. Comparison of three methods for isolation of urinary microvesicles to identify biomarkers of nephrotic syndrome. Kidney Int. 2010;78:810–6.

    Article  CAS  PubMed  Google Scholar 

  • Ruilope L, Izzo J, Haller H, et al. Prevention of microalbuminuria in patients with type 2 diabetes: what do we know? J Clin Hypertens (Greenwich). 2010;12:422–30.

    Article  Google Scholar 

  • Salih M. Urinary extracellular vesicles and the kidney: biomarkers and beyond. Am J Physiol Renal Physiol. 2014;306:F1251–9.

    Article  CAS  PubMed  Google Scholar 

  • Santana SM, Antonyak MA, Cerione RA, et al. Microfluidic isolation of cancer-cell-derived microvesicles from heterogeneous extracellular shed vesicle populations. Biomed Microdevices. 2014;16:869–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma K, Karl B, Mathew AV, et al. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J Am Soc Nephrol. 2013;24:1901–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson RJ, Lim JW, Moritz RL, et al. Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics. 2009;6:267–83.

    Article  CAS  PubMed  Google Scholar 

  • Sonoda H, Yokota-Ikeda N, Oshikawa S, et al. Decreased abundance of urinary exosomal aquaporin-1 in renal ischemia-reperfusion injury. Am J Physiol Renal Physiol. 2009;297:F1006–16.

    Article  CAS  PubMed  Google Scholar 

  • Street JM, Birkhoff W, Menzies RI, et al. Exosomal transmission of functional aquaporin 2 in kidney cortical collecting duct cells. J Physiol. 2011;589:6119–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun AL, Deng JT, Guan GJ, et al. Dipeptidyl peptidase-IV is a potential molecular biomarker in diabetic kidney disease. Diab Vasc Dis Res. 2012;9:301–8.

    Article  PubMed  Google Scholar 

  • Susztak K, Raff AC, Schiffer M, et al. Glucose-Induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes. 2006;55:225–33.

    Article  CAS  PubMed  Google Scholar 

  • Trnka P, Ivanova L, Hiatt MJ, et al. Urinary biomarkers in obstructive nephropathy. Clin J Am Soc Nephrol. 2012;7:1567–75.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Balkom BW, Pisitkun T, Verhaar MC, et al. Exosomes and the kidney: prospects for diagnosis and therapy of renal diseases. Kidney Int. 2011;80:1138–45.

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Kloet FM, Tempels FWA, Ismail N, et al. Discovery of early-stage biomarkers for diabetic kidney disease using ms-based metabolomics (FinnDiane study). Metabolomics. 2012;8:109–19.

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Szeto CC. Quantification of gene expression in urinary sediment for the study of renal diseases. Nephrology (Carlton). 2007;12:494–9.

    Article  CAS  Google Scholar 

  • Wolf G, Chen S, Ziyadeh FN, et al. From the periphery of the glomerular capillary wall toward the center of disease: podocyte injury comes of age in diabetic nephropathy. Diabetes. 2005;54:1626–34.

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Yuen PS, Pisitkun T, et al. Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery. Kidney Int. 2006a;69:1471–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Pisitkun T, Aponte A, et al. Exosomal Fetuin-A identified by proteomics: a novel urinary biomarker for detecting acute kidney injury. Kidney Int. 2006b;70:1847–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Cheruvanky A, Hu X, et al. Urinary exosomal transcription factors, a new class of biomarkers for renal disease. Kidney Int. 2008;74:613–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Kajiyama H, Tsuji T, et al. Urinary exosomal Wilms’ tumor-1 as a potential biomarker for podocyte injury. Am J Physiol Renal Physiol. 2013;305:F553–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu C, Liang QL, Hu P, et al. Phospholipidomic identification of potential plasma biomarkers associated with type 2 diabetes mellitus and diabetic nephropathy. Talanta. 2011;85:1711–20.

    Article  CAS  PubMed  Google Scholar 

  • Zubiri I, Vivanco F, Alvarez-Llamas G. Proteomic analysis of urinary exosomes in cardiovascular and associated kidney diseases by two-dimensional electrophoresis and LC-MS/MS. Methods Mol Biol. 2013;1000:209–20.

    Article  CAS  PubMed  Google Scholar 

  • Zubiri I, Posada-Ayala M, Sanz-Maroto A, et al. Diabetic nephropathy induces changes in the proteome of human urinary exosomes as revealed by label-free comparative analysis. J Proteomics. 2014;96:92–102.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria Alvarez-Llamas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Alvarez-Llamas, G., Zubiri, I. (2016). Proteome of Human Urinary Exosomes in Diabetic Nephropathy. In: Patel, V., Preedy, V. (eds) Biomarkers in Kidney Disease. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7699-9_22

Download citation

Publish with us

Policies and ethics