Skip to main content

Peritoneal Effluent Biomarker Discovery in Peritoneal Dialysis: The Omics Era

  • Reference work entry
  • First Online:
  • 1405 Accesses

Abstract

One of the main renal replacement treatment modalities for patients with end-stage renal diseases is peritoneal dialysis (PD). In PD therapy, the peritoneum is used as an intracorporeal dialysis system. The monitoring of intraperitoneal events is hampered by the absence of serial peritoneal biopsies. However, the acquisition of peritoneal effluent is simple and usually occurs after a predefined dwell or if possible after a standardized peritoneal function test. This peritoneal effluent is composed of several proteins and metabolites, which modifies accordingly due to intraperitoneal events. To date, peritoneal effluent biomarker discovery is evolving with a holistic perspective. The rise of applying suffix -omics technologies within PD therapy introduced a more exploratory approach for the identification of candidate effluent biomarkers. The application of genomics, metabolomics, and proteomics with the peritoneal effluent as biospecimen is however still in its infancy.

The emerging field of omics techniques as tools for peritoneal effluent biomarker discovery is presented in this chapter. The high sensitivity of omics technologies requires stringent conditions, and therefore methodological precautions must be undertaken on laboratory technical level, appropriate selection of study design and population, as well as data analysis. For this reason, methodological considerations for conducting omics-based PD research and the current developments with regard to the usage of these disciplines are addressed. Lastly, a summary is given on the available literature concerning the usage of omics techniques with the peritoneal effluent as a liquid biopsy within PD therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

2D-DIGE:

Two-dimensional difference gel electrophoresis

Biobank:

Biological bank

Biomarker:

Biological marker

CAPD:

Continuous ambulatory peritoneal dialysis

CKD:

Chronic kidney disease

CRP:

C-reactive protein

CV:

Coefficient of variation

DN:

Diabetic nephropathy

DNA:

Deoxyribonucleic acid

ELISA:

Enzyme-linked immuno assay

EPS:

Encapsulating peritoneal sclerosis

GN:

Glomerulonephritis

GWAS:

Genome-wide association studies

Ig:

Immunoglobulin

IL-6:

Interleukin-6

MS:

Mass spectrometry

NECOSAD:

Netherlands Cooperative Study on the Adequacy of Dialysis

NMR:

Nuclear magnetic resonance

NRI:

Net reclassification index

PD:

Peritoneal dialysis

RNA:

Ribonucleic acid

ROC curve:

Receiver operating characteristic curve

SNPs:

Single nucleotide polymorphisms

SOP:

Standard operating procedures

VEGF:

Vascular endothelial growth factor

References

  • Atkinson AJ, Colburn WA, DeGruttola VG, et al. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Therm. 2001;69:89–95.

    Article  Google Scholar 

  • Atzler D, Schwedhelm E, Zeller T. Integrated genomics and metabolomics in nephrology. Nephrol Dial Transplant. 2014;29:1467–74.

    Article  CAS  PubMed  Google Scholar 

  • Bonomini M, Sirolli V, Magni F, et al. Proteomics and nephrology. J Nephrol. 2012;25:865–71.

    Article  CAS  PubMed  Google Scholar 

  • Brewis IA, Topley N. Proteomics and peritoneal dialysis: early days but clear potential. Nephrol Dial Transplant. 2010;25:1749–53.

    Article  PubMed  PubMed Central  Google Scholar 

  • Coester AM, Smit W, Struijk DG, et al. Peritoneal functions in clinical practice: the importance of follow-up and its measurement in patients. Recommendations for patient information and measurement of peritoneal function. NDT Plus. 2009;2:104–10.

    PubMed  PubMed Central  Google Scholar 

  • Colburn WA. Optimizing the use of biomarkers, surrogate endpoints and clinical endpoints for more efficient drug development. J Clin Pharmacol. 2000;40:1419–27.

    CAS  PubMed  Google Scholar 

  • Cuccurullo M, Evangelista C, Vilasi A, et al. Proteomic analysis of peritoneal fluid of patients treated by peritoneal dialysis: effect of glucose concentration. Nephrol Dial Transplant. 2011;26:1990–9.

    Article  CAS  PubMed  Google Scholar 

  • Dunn WB, Summers A, Brown M, et al. Proof-of-principle study to detect metabolic changes in peritoneal dialysis dialysate in patients who develop encapsulating peritoneal sclerosis. Nephrol Dial Transplant. 2012;27:2502–10.

    Article  CAS  PubMed  Google Scholar 

  • Gillerot G, Debaix H, Devuyst O. Genotyping: a new application for the spent dialysate in peritoneal dialysis. Nephrol Dial Transplant. 2004;19:1298–301.

    Article  CAS  PubMed  Google Scholar 

  • Hulka BS, Wilcosky TC, Griffith JD. Biological markers in epidemiology. New York: Oxford University Press; 1990.

    Google Scholar 

  • Jain KK. The handbook of biomarkers. New York: Humana Press; 2010.

    Book  Google Scholar 

  • Kottgen A. Genome-wide association studies in nephrology research. Am J Kidney Dis. 2010;56:743–58.

    Article  PubMed  Google Scholar 

  • Lin WT, Tsai CC, Chen CY, et al. Proteomic analysis of peritoneal dialysate fluid in patients with dialysis-related peritonitis. Ren Fail. 2008;30:772–7.

    Article  CAS  PubMed  Google Scholar 

  • Lopes Barreto D, Sampimon DE, Coester AM, et al. The value of osmotic conductance and free water transport in the prediction of encapsulating peritoneal sclerosis. Adv Perit Dial. 2014;30:21–6.

    Google Scholar 

  • Metzger J, Chatzikyrkou C, Broecker V, et al. Diagnosis of subclinical and clinical acute T-cell-mediated rejection in renal transplant patients by urinary proteome analysis. Proteomics Clin Appl. 2011;5:322–33.

    Article  CAS  PubMed  Google Scholar 

  • Papale M, Di Paolo S, Magistroni R, et al. Urine proteome analysis may allow noninvasive differential diagnosis of diabetic nephropathy. Diabetes Care. 2010;33:2409–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perera FP, Weinstein IB. Molecular epidemiology; recent advances and future directions. Carcinogenesis. 2000;21:517–24.

    Article  CAS  PubMed  Google Scholar 

  • Pešić I, Dihazi GH, Müller GA, et al. Short-term increase of glucose concentration in PDS results in extensive removal and high glycation level of vital proteins during continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant. 2011;26:2674–83.

    Article  PubMed  Google Scholar 

  • Raaijmakers R, Pluk W, Schröder CH, et al. Proteomic profiling and identification in peritoneal fluid of children treated by peritoneal dialysis. Nephrol Dial Transplant. 2008;23:2402–5.

    Article  CAS  PubMed  Google Scholar 

  • Rocchetti MT, Centra M, Papale M, et al. Urine protein profile of IgA nephropathy patients may predict the response to ACE-inhibitor therapy. Proteomics. 2008;8:206–16.

    Article  CAS  PubMed  Google Scholar 

  • Sritippayawan S, Chiangjong W, Semangoen T, et al. Proteomic analysis of peritoneal dialysate fluid in patients with different types of peritoneal membranes. J Proteome Res. 2007;6:4356–62.

    Article  CAS  PubMed  Google Scholar 

  • Szeto CC, Chow KM, Poon P, et al. Genetic polymorphism of VEGF: impact on longitudinal change of peritoneal transport and survival of peritoneal dialysis patients. Kidney Int. 2004;65:1947–55.

    Article  CAS  PubMed  Google Scholar 

  • Thongboonkerd V. Proteomics in extracorporeal blood purification and peritoneal dialysis. J Proteomics. 2010;73:521–6.

    Article  CAS  PubMed  Google Scholar 

  • Tyan YC, Su SB, Ting SS, et al. A comparative proteomics analysis of peritoneal dialysate before and after the occurrence of peritonitis episode by mass spectrometry. Clin Chim Acta. 2013;420:34–44.

    Article  CAS  PubMed  Google Scholar 

  • Verduijn M, Maréchal C, Coester AM, et al. The −174G/C variant of IL6 as risk factor for mortality and technique failure in a large cohort of peritoneal dialysis patients. Nephrol Dial Transplant. 2012;27:3516–21.

    Article  CAS  PubMed  Google Scholar 

  • Wang HY, Tian YF, Chien CC, et al. Differential proteomic characterization between normal peritoneal fluid and diabetic peritoneal dialysate. Nephrol Dial Transplant. 2010;25:1955–63.

    Article  CAS  PubMed  Google Scholar 

  • Wang HY, Lin CY, Chien CC, et al. Impact of uremic environment on peritoneum: a proteomic view. J Proteomics. 2012;75:2053–63.

    Article  CAS  PubMed  Google Scholar 

  • Wen Q, Zhang L, Mao HP, et al. Proteomic analysis in peritoneal dialysis patients with different peritoneal transport characteristics. Biochem Biophys Res Commun. 2013;30(438):473–8.

    Article  Google Scholar 

  • Wilson PW, Pencina M, Jacques P, et al. C-reactive protein and reclassification of cardiovascular risk in the Framingham Heart Study. Circ Cardiovasc Outcome. 2008;1:92–7.

    Article  Google Scholar 

  • Wu HY, Liao AC, Huang CC, et al. Comparative proteomic analysis of peritoneal dialysate from chronic glomerulonephritis patients. Biomed Res Int. 2013. doi:10.1155/2013/863860.

    Google Scholar 

  • Yang MH, Wang HY, Lu CY, et al. Proteomic profiling for peritoneal dialysate: differential protein expression in diabetes mellitus. Biomed Res Int. 2013. doi:10.1155/2013/642964.

    Google Scholar 

  • Zhang X, Jin M, Wu H, et al. Biomarkers of lupus nephritis determined by serial urine proteomics. Kidney Int. 2008;74:799–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Wen Q, Mao HP, et al. Developing a reproducible method for the high-resolution separation of peritoneal dialysate proteins on 2-D gels. Protein Expr Purif. 2013;89:196–202.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deirisa Lopes Barreto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Lopes Barreto, D., Struijk, D.G. (2016). Peritoneal Effluent Biomarker Discovery in Peritoneal Dialysis: The Omics Era. In: Patel, V., Preedy, V. (eds) Biomarkers in Kidney Disease. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7699-9_15

Download citation

Publish with us

Policies and ethics