Skip to main content

Biomarker for Amyotrophic Lateral Sclerosis

  • Reference work entry
  • First Online:
General Methods in Biomarker Research and their Applications

Abstract

Amyotrophic lateral sclerosis (ALS) is a disabling and fatal neurodegenerative motor neuron disease whose unresolved etiology is likely to be multifactorial involving both environmental and genetic factors. Neither risk factors (increasing the likelihood of disease initiation or promotion) have been unambiguously elucidated nor reliable diagnostic markers (complying with sensitivity and specificity requirements) have been validated or even clinically proven. Beyond that, no efficient therapy or pharmacologic intervention exists so far. The only available drug, riluzole, extends the lifespan of ALS patients for not more than 2–3 months. There is a basic lack of information about the pathomechanisms involved in the course of disease initiation and progression, especially how proposed cytopathological events interact with each other in a disease typical manner. Beyond motor neuron degeneration, there is strong evidence that the relentless disorder has further systemic implications. ALS patients frequently experience single or multiple misdiagnosis. The average time from disease onset to correct diagnosis is 12 months. This is particularly significant when one considers that most of the ALS patients die within 2–5 years after disease onset. In fact, delayed diagnosis times hamper research on early diagnostic markers, whereas short survival times come along with narrow time windows to study disease-modifying factors or even to define therapeutic end points in the course of intervention studies. The current chapter gives a review about the progress in biomarker research based on genetic, proteomic, and metabolomic (candidate) markers reported so far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALS:

Amyotrophic lateral sclerosis

BMAA:

β-N-methylamino-l-alanine

CSF:

Cerebrospinal fluid

ER:

Endoplasmic reticulum

FUS/TLS:

Fused in sarcoma/translated in liposarcoma

GluRs:

Glutamate receptors

mRNA:

Messenger ribonucleic acid

PTMs:

Posttranslational modifications

ROS:

Reactive oxygen species

SOD1:

Cu,Zn-superoxide dismutase 1

SOPs:

Standard operation protocols

TDP-43:

Tar DNA-binding protein 43

References

  • Al-Saif A, Al-Mohanna F, Bohlega S. A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis. Ann Neurol. 2011;70(6):913–19.

    Article  CAS  PubMed  Google Scholar 

  • Annesi G, Savettieri G, Pugliese P, et al. DJ-1 mutations and parkinsonism-dementia-amyotrophic lateral sclerosis complex. Ann Neurol. 2005;58(5):803–7.

    Article  CAS  PubMed  Google Scholar 

  • Araki S, Iwahashi Y, Kuroiwa Y. Epidemiological study of amyotrophic lateral sclerosis and allied disorders in Kii Peninsula (Japan). J Neurol Sci. 1967;4(2):279–87.

    Article  CAS  PubMed  Google Scholar 

  • Beuche W, Yushchenko M, Mader M, et al. Matrix metalloproteinase-9 is elevated in serum of patients with amyotrophic lateral sclerosis. Neuroreport. 2000;11(16):3419–22.

    Article  CAS  PubMed  Google Scholar 

  • Bilic E, Rudan I, Kusec V, et al. Comparison of the growth hormone, IGF-1 and insulin in cerebrospinal fluid and serum between patients with motor neuron disease and healthy controls. Eur J Neurol. 2006;13(12):1340–5.

    Article  CAS  PubMed  Google Scholar 

  • Bogdanov M, Brown RH, Matson W, et al. Increased oxidative damage to DNA in ALS patients. Free Radic Biol Med. 2000;29(7):652–8.

    Article  CAS  PubMed  Google Scholar 

  • Brettschneider J, Petzold A, Sussmuth SD, et al. Axonal damage markers in cerebrospinal fluid are increased in ALS. Neurology. 2006;66(6):852–6.

    Article  CAS  PubMed  Google Scholar 

  • Brettschneider J, Widl K, Schattauer D, et al. Cerebrospinal fluid erythropoietin (EPO) in amyotrophic lateral sclerosis. Neurosci Lett. 2007;416(3):257–60.

    Article  CAS  PubMed  Google Scholar 

  • Brettschneider J, Mogel H, Lehmensiek V, et al. Proteome analysis of cerebrospinal fluid in amyotrophic lateral sclerosis (ALS). Neurochem Res. 2008;33(11):2358–63.

    Article  CAS  PubMed  Google Scholar 

  • Butterfield RJ, Ramachandran D, Hasstedt SJ, et al. A novel form of juvenile recessive ALS maps to loci on 6p25 and 21q22. Neuromuscul Disord. 2009;19(4):279–87.

    Article  PubMed  Google Scholar 

  • Butterfield DA, Perluigi M, Reed T, et al. Redox proteomics in selected neurodegenerative disorders: from its infancy to future applications. Antioxid Redox Signal. 2012;17(11):1610–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YZ, Bennett CL, Huynh HM, et al. DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am J Hum Genet. 2004;74(6):1128–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chio A, Benzi G, Dossena M, et al. Severely increased risk of amyotrophic lateral sclerosis among Italian professional football players. Brain. 2005;128:472–6.

    Article  PubMed  Google Scholar 

  • Chow CY, Landers JE, Bergen SK, et al. Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. Am J Hum Genet. 2009;84(1):85–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox LE, Ferraiuolo L, Goodall EF, et al. Mutations in CHMP2B in lower motor neuron predominant amyotrophic lateral sclerosis (ALS). PLoS One. 2010;5(3):e9872.

    Google Scholar 

  • Cronin S, Greenway MJ, Ennis S, et al. Elevated serum angiogenin levels in ALS. Neurology. 2006;67(10):1833–6.

    Article  CAS  PubMed  Google Scholar 

  • DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72(2):245–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng H-X, Chen W, Hong S-T, et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature. 2011;477(7363):211–U113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diz AP, Truebano M, Skibinski DOF. The consequences of sample pooling in proteomics: an empirical study. Electrophoresis. 2009;30(17):2967–75.

    Article  CAS  PubMed  Google Scholar 

  • Dobson-Stone C, Luty AA, Thompson EM, et al. Frontotemporal dementia-amyotrophic lateral sclerosis syndrome locus on chromosome 16p12.1-q12.2: genetic, clinical and neuropathological analysis. Acta Neuropathol. 2013;125(4):523–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupuis L, Corcia P, Fergani A, et al. Dyslipidemia is a protective factor in amyotrophic lateral sclerosis. Neurology. 2008;70(13):1004–9.

    Google Scholar 

  • Dupuis L, Dengler R, Heneka MT, et al. A randomized, double blind, placebo-controlled trial of pioglitazone in combination with riluzole in amyotrophic lateral sclerosis. PLoS One. 2012;7(6):e37885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elden AC, Kim H-J, Hart MP, et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature. 2010;466(7310):1069–U1077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita K, Honda M, Hayashi R, et al. Transglutaminase activity in serum and cerebrospinal fluid in sporadic amyotrophic lateral sclerosis: a possible use as an indicator of extent of the motor neuron loss. J Neurol Sci. 1998;158(1):53–7.

    Article  CAS  PubMed  Google Scholar 

  • Ganesalingam J, An J, Shaw CE, et al. Combination of neurofilament heavy chain and complement C3 as CSF biomarkers for ALS. J Neurochem. 2011;117(3):528–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodall EF, Haque MS, Morrison KE. Increased serum ferritin levels in amyotrophic lateral sclerosis (ALS) patients. J Neurol. 2008;255(11):1652–6.

    Article  CAS  PubMed  Google Scholar 

  • Greenway MJ, Andersen PM, Russ C, et al. ANG mutations segregate with familial and ‘sporadic’ amyotrophic lateral sclerosis. Nat Genet. 2006;38(4):411–13.

    Article  CAS  PubMed  Google Scholar 

  • Grundström E, Lindholm D, Johansson A, et al. GDNF but not BDNF is increased in cerebrospinal fluid in amyotrophic lateral sclerosis. Neuroreport. 2000;11(8):1781–3.

    Article  PubMed  Google Scholar 

  • Hadano S, Hand CK, Osuga H, et al. A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat Genet. 2001;29(2):166–73.

    Article  CAS  PubMed  Google Scholar 

  • Hand CK, Khoris J, Salachas F, et al. A novel locus for familial amyotrophic lateral sclerosis, on chromosome 18q. Am J Hum Genet. 2002;70(1):251–6.

    Article  CAS  PubMed  Google Scholar 

  • Hermosura MC, Nayakanti H, Dorovkov MV, et al. A TRPM7 variant shows altered sensitivity to magnesium that may contribute to the pathogenesis of two Guamanian neurodegenerative disorders. Proc Natl Acad Sci U S A. 2005;102(32):11510–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosback S, Hardiman O, Nolan CM, et al. Circulating insulin-like growth factors and related binding proteins are selectively altered in amyotrophic lateral sclerosis and multiple sclerosis. Growth Horm IGF Res. 2007;17(6):472–9.

    Article  CAS  PubMed  Google Scholar 

  • Houi K, Kobayashi T, Kato S, et al. Increased plasma TGF-beta 1 in patients with amyotrophic lateral sclerosis. Acta Neurol Scand. 2002;106(5):299–301.

    Article  CAS  PubMed  Google Scholar 

  • Ilzecka J. Decreased cerebrospinal fluid cytochrome c levels in patients with amyotrophic lateral sclerosis. Scand J Clin Lab Invest. 2007;67(3):264–9.

    Article  CAS  PubMed  Google Scholar 

  • Ilzecka J, Stelmasiak Z, Dobosz B. Interleukin-1beta converting enzyme/Caspase-1 (ICE/Caspase-1) and soluble APO-1/Fas/CD 95 receptor in amyotrophic lateral sclerosis patients. Acta Neurol Scand. 2001;103(4):255–8.

    Article  CAS  PubMed  Google Scholar 

  • Johnson JO, Mandrioli J, Benatar M, et al. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron. 2010;68(5):857–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabashi E, Valdmanis PN, Dion P, et al. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet. 2008;40(5):572–4.

    Article  CAS  PubMed  Google Scholar 

  • Kaneb HM, Sharp PS, Rahmani-Kondori N, et al. Metformin treatment has no beneficial effect in a dose–response survival study in the SOD1(G93A) mouse model of ALS and is harmful in female mice. PLoS One. 2011;6(9):e24189.

    Google Scholar 

  • Kasai T, Tokuda T, Ishigami N, et al. Increased TDP-43 protein in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Acta Neuropathol. 2009;117(1):55–62.

    Article  CAS  PubMed  Google Scholar 

  • Koppers M, van Blitterswijk MM, Vlam L, et al. VCP mutations in familial and sporadic amyotrophic lateral sclerosis. Neurobiol Aging. 2012;33(4):837.e7–13.

    Google Scholar 

  • Krüger T, Mönch B, Oppenhäuser S, et al. LC-MS/MS determination of the isomeric neurotoxins BMAA (beta-N-methylamino-l-alanine) and DAB (2,4-diaminobutyric acid) in cyanobacteria and seeds of Cycas revoluta and Lathyrus latifolius. Toxicon. 2010;55(2–3):547–57.

    Article  PubMed  Google Scholar 

  • Krüger T, Oelmüller R, Luckas B. The origin of β-N-methylamino-l-alanine (BMAA): cycads and/or cyanobacteria? J Endocytobiosis Cell Res. 2012;22:29–36.

    Google Scholar 

  • Krüger T, Lautenschläger J, Grosskreutz J, et al. Proteome analysis of body fluids for amyotrophic lateral sclerosis biomarker discovery. Proteomics Clin Appl. 2013a;7(1–2):123–35.

    Article  PubMed  Google Scholar 

  • Krüger T, Lehmann T, Rhode H. Effect of quality characteristics of single sample preparation steps in the precision and coverage of proteomic studies – a review. Anal Chim Acta. 2013b;776:1–10.

    Article  PubMed  Google Scholar 

  • Kuhle J, Lindberg RLP, Regeniter A, et al. Increased levels of inflammatory chemokines in amyotrophic lateral sclerosis. Eur J Neurol. 2009;16(6):771–4.

    Article  CAS  PubMed  Google Scholar 

  • Kwiatkowski Jr TJ, Bosco DA, LeClerc AL, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science. 2009;323(5918):1205–8.

    Article  CAS  PubMed  Google Scholar 

  • Lobner D, Piana PMT, Salous AK, et al. beta-N-methylamino-l-alanine enhances neurotoxicity through multiple mechanisms. Neurobiol Dis. 2007;25(2):360–6.

    Article  CAS  PubMed  Google Scholar 

  • Maruyama H, Morino H, Ito H, et al. Mutations of optineurin in amyotrophic lateral sclerosis. Nature. 2010;465(7295):223–U109.

    Article  CAS  PubMed  Google Scholar 

  • Matsuishi T, Nagamitsu S, Shoji H, et al. Increased cerebrospinal fluid levels of substance P in patients with amyotrophic lateral sclerosis. J Neural Transm. 1999;106(9–10):943–8.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell RM, Freeman WM, Randazzo WT, et al. A CSF biomarker panel for identification of patients with amyotrophic lateral sclerosis. Neurology. 2009;72(1):14–9.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell J, Paul P, Chen H-J, et al. Familial amyotrophic lateral sclerosis is associated with a mutation in d-amino acid oxidase. Proc Natl Acad Sci U S A. 2010;107(16):7556–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreau C, Devos D, Brunaud-Danel V, et al. Paradoxical response of VEGF expression to hypoxia in CSF of patients with ALS. J Neurol Neurosurg Psychiatry. 2006;77(2):255–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimura AL, Mitne-Neto M, Silva HCA, et al. A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet. 2004;75(5):822–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noto Y-I, Shibuya K, Sato Y, et al. Elevated CSF TDP-43 levels in amyotrophic lateral sclerosis: specificity, sensitivity, and a possible prognostic value. Amyotroph Lateral Scler. 2011;12(2):140–3.

    Article  CAS  PubMed  Google Scholar 

  • Obayashi K, Sato K, Shimazaki R, et al. Salivary chromogranin A: useful and quantitative biochemical marker of affective state in patients with amyotrophic lateral sclerosis. Intern Med. 2008;47(21):1875–9.

    Article  PubMed  Google Scholar 

  • Ono S, Imai T, Matsubara S, et al. Decreased urinary concentrations of type IV collagen in amyotrophic lateral sclerosis. Acta Neurol Scand. 1999;100(2):111–16.

    Article  CAS  PubMed  Google Scholar 

  • Ono S, Imai T, Shimizu N, et al. Decreased plasma levels of fibronectin in amyotrophic lateral sclerosis. Acta Neurol Scand. 2000a;101(6):391–4.

    Article  CAS  PubMed  Google Scholar 

  • Ono S, Imai T, Tsumura M, et al. Increased serum hyaluronic acid in amyotrophic lateral sclerosis: relation to its skin content. Amyotroph Lateral Scler Other Motor Neuron Disord. 2000b;1(3):213–18.

    Article  CAS  PubMed  Google Scholar 

  • Ono S, Hu SG, Shimizu N, et al. Increased interleukin-6 of skin and serum in amyotrophic lateral sclerosis. J Neurol Sci. 2001;187(1–2):27–34.

    Article  CAS  PubMed  Google Scholar 

  • Orlacchio A, Babalini C, Borreca A, et al. SPATACSIN mutations cause autosomal recessive juvenile amyotrophic lateral sclerosis. Brain. 2010;133:591–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Otto M, Bowser R, Turner M, et al. Roadmap and standard operating procedures for biobanking and discovery of neurochemical markers in ALS. Amyotroph Lateral Scler. 2012;13(1):1–10.

    Article  PubMed  Google Scholar 

  • Pasinetti GM, Ungar LH, Lange DJ, et al. Identification of potential CSF biomarkers in ALS. Neurology. 2006;66(8):1218–22.

    Article  CAS  PubMed  Google Scholar 

  • Plato CC, Garruto RM, Galasko D, et al. Amyotrophic lateral sclerosis and parkinsonism-dementia complex of Guam: changing incidence rates during the past 60 years. Am J Epidemiol. 2003;157(2):149–57.

    Article  PubMed  Google Scholar 

  • Poloni M, Facchetti D, Mai R, et al. Circulating levels of tumour necrosis factor-alpha and its soluble receptors are increased in the blood of patients with amyotrophic lateral sclerosis. Neurosci Lett. 2000;287(3):211–14.

    Article  CAS  PubMed  Google Scholar 

  • Ranganathan S, Williams E, Ganchev P, et al. Proteomic profiling of cerebrospinal fluid identifies biomarkers for amyotrophic lateral sclerosis. J Neurochem. 2005;95(5):1461–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renton AE, Majounie E, Waite A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72(2):257–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosen DR, Siddique T, Patterson D, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362(6415):59–62.

    Article  CAS  PubMed  Google Scholar 

  • Sapp PC, Hosler BA, McKenna-Yasek D, et al. Identification of two novel loci for dominantly inherited familial amyotrophic lateral sclerosis. Am J Hum Genet. 2003;73(2):397–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekizawa T, Openshaw H, Ohbo K, et al. Cerebrospinal fluid interleukin 6 in amyotrophic lateral sclerosis: immunological parameter and comparison with inflammatory and non-inflammatory central nervous system diseases. J Neurol Sci. 1998;154(2):194–9.

    Article  CAS  PubMed  Google Scholar 

  • Sheu L, Pasyk EA, Ji JZ, et al. Regulation of insulin exocytosis by Munc13-1. J Biol Chem. 2003;278(30):27556–63.

    Article  CAS  PubMed  Google Scholar 

  • Shinozawa T, Urade Y, Maruyama T, et al. Tetranor PGDM analyses for the amyotrophic lateral sclerosis: positive and simple diagnosis and evaluation of drug effect. Biochem Biophys Res Commun. 2011;415(4):539–44.

    Article  CAS  PubMed  Google Scholar 

  • Simpson EP, Henry YK, Henkel JS, et al. Increased lipid peroxidation in sera of ALS patients – a potential biomarker of disease burden. Neurology. 2004;62(10):1758–65.

    Article  CAS  PubMed  Google Scholar 

  • Sjogren M, Davidson P, Wallin A, et al. Decreased CSF-beta-amyloid 42 in Alzheimer’s disease and amyotrophic lateral sclerosis may reflect mismetabolism of beta-amyloid induced by disparate mechanisms. Dement Geriatr Cogn Disord. 2002;13(2):112–18.

    Article  PubMed  Google Scholar 

  • Sleegers K, Brouwers N, Maurer-Stroh S, et al. Progranulin genetic variability contributes to amyotrophic lateral sclerosis. Neurology. 2008;71(4):253–9.

    Article  CAS  PubMed  Google Scholar 

  • Spencer PS, Nunn PB, Hugon J, et al. Guam amyotrophic-lateral-sclerosis parkinsonism dementia linked to a plant excitant neurotoxin. Science. 1987;237(4814):517–22.

    Article  CAS  PubMed  Google Scholar 

  • Sreedharan J, Blair IP, Tripathi VB, et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science. 2008;319(5870):1668–72.

    Article  CAS  PubMed  Google Scholar 

  • Stommel EW, Cohen JA, Fadul CE, et al. Efficacy of thalidomide for the treatment of amyotrophic lateral sclerosis: a phase II open label clinical trial. Amyotroph Lateral Scler. 2009;10(5–6):393–404.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Kikuchi H, Ishizu T, et al. Intrathecal upregulation of granulocyte colony stimulating factor and its neuroprotective actions on motor neurons in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 2006;65(8):816–25.

    Article  CAS  PubMed  Google Scholar 

  • Toczylowska B, Jamrozik Z, Liebert A, et al. NMR-based metabolomics of cerebrospinal fluid applied to amyotrophic lateral sclerosis. Biocybern Biomed Eng. 2013;33(1):21–32.

    Article  Google Scholar 

  • Tsuboi Y, Yamada T. Increased concentration of C4d complement protein in CSF in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 1994;57(7):859–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Es MA, Veldink JH, Saris CGJ, et al. Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis. Nat Genet. 2009;41(10):1083–U1053.

    Article  PubMed  Google Scholar 

  • Vance C, Rogelj B, Hortobagyi T, et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science. 2009;323(5918):1208–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verstraete E, Kuiperij HB, van Blitterswijk MM, et al. TDP-43 plasma levels are higher in amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2012;13(5):446–51.

    Article  CAS  PubMed  Google Scholar 

  • Vinceti M, Fiore M, Signorelli C, et al. Environmental risk factors for amyotrophic lateral sclerosis: methodological issues in epidemiologic studies. Ann Ig. 2012;24(5):407–15.

    CAS  PubMed  Google Scholar 

  • Wu CH, Fallini C, Ticozzi N, et al. Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature. 2012;488(7412):499–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Hentati A, Deng HX, et al. The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nat Genet. 2001;29(2):160–5.

    Article  CAS  PubMed  Google Scholar 

  • Zetterberg H, Jacobsson J, Rosengren L, et al. Cerebrospinal fluid neurofilament light levels in amyotrophic lateral sclerosis: impact of SOD1 genotype. Eur J Neurol. 2007;14(12):1329–33.

    Article  CAS  PubMed  Google Scholar 

  • Zhou J-Y, Afjehi-Sadat L, Asress S, et al. Galectin-3 is a candidate biomarker for amyotrophic lateral sclerosis: discovery by a proteomics approach. J Proteome Res. 2010;9(10):5133–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Krüger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Krüger, T. (2015). Biomarker for Amyotrophic Lateral Sclerosis. In: Preedy, V., Patel, V. (eds) General Methods in Biomarker Research and their Applications. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7696-8_7

Download citation

Publish with us

Policies and ethics