Skip to main content

Urinary Exosomes as Potential Source for Identification of Biomarkers for Kidney Damage: Comparing Methodologies

  • Reference work entry
  • First Online:
General Methods in Biomarker Research and their Applications

Abstract

Early detection of chronic kidney diseases such as diabetic nephropathy is an area of emerging research interest. To date, most efforts focused on either histological analysis of biopsied renal tissue or investigation of protein, mRNA, or microRNA levels in kidney or urine. Urine contains small microvesicles (40–100 nm in size), commonly called exosomes, that are released by cells lining the inner walls of nephron segments. It is becoming clear that exosomes released into the urine may provide valuable information for identifying biomarkers of kidney damage, particularly under conditions of renal dysfunction and injury. Several methods have been developed to isolate exosomes from urine, including ones based on ultracentrifugation, nanomembrane concentration and precipitation techniques. We have previously compared different methods for the extraction of urinary exosomes for downstream applications involving analysis of protein, mRNA, and miRNA. In this chapter, we outline the basic principles, as well as the strengths and weaknesses, of each method for the isolation of exosomes from human urine. The goal of this chapter is to provide a foundation upon which researchers may select the method of urinary exosome extraction most suitable for their specific downstream needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3′ UTR:

3′ Untranslated Region

Alix:

Apoptosis-Linked Gene 2-Interacting Protein X

AQP2:

Aquaporin 2

CKD:

Chronic Kidney Disease

DTT:

Dithiothreitol

ESRD:

End-Stage Renal Diseases

kDa:

Kilo Dalton

miRNA:

MicroRNA

MVB:

Multivesicular Bodies

MWCO:

Molecular Weight Cutoff

PBS:

Phosphate Buffered Saline

PDCD6IP:

Programmed Cell Death 6-Interacting Protein

SDS-PAGE:

Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis

THP:

Tamm-Horsfall Protein

TSG101:

Tumor Susceptibility Gene 101

References

  • Alvarez ML, DiStefano JK. The role of non-coding RNAs in diabetic nephropathy: potential applications as biomarkers for disease development and progression. Diabetes Res Clin Pract. 2013;99(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  • Alvarez ML, Khosroheidari M, Kanchi Ravi R, DiStefano JK. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int. 2012;82(9):1024–32.

    Article  CAS  PubMed  Google Scholar 

  • Barutta F, Tricarico M, Corbelli A, Annaratone L, Pinach S, et al. Urinary exosomal microRNAs in incipient diabetic nephropathy. PLoS One. 2013;8(11):e73798. doi:10.1371/journal.pone.0073798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blumenthal SS. Evolution of treatment for diabetic nephropathy: historical progression from RAAS inhibition and onward. Postgrad Med. 2011;123(6):166–79.

    Article  PubMed  Google Scholar 

  • Cheruvanky A, Zhou H, Pisitkun T, et al. Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator. Am J Physiol Renal Physiol. 2007;292:F1657–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Llama P, Khositseth S, Gonzales PA, et al. Tamm-Horsfall protein and urinary exosome isolation. Kidney Int. 2010;77:736–42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzales PA, Pisitkun T, Hoffert JD, et al. Large-scale proteomics and phosphoproteomics of urinary exosomes. J Am Soc Nephrol. 2009;20:363–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzales PA, Zhou H, Pisitkun T, et al. Isolation and purification of exosomes in urine. Methods Mol Biol. 2010;641:89–99.

    Article  CAS  PubMed  Google Scholar 

  • Gray SP, Cooper ME. Diabetic nephropathy in 2010: alleviating the burden of diabetic nephropathy. Nat Rev Nephrol. 2011;7(2):71–3.

    Article  CAS  PubMed  Google Scholar 

  • Hayden PS, Iyengar SK, Schelling JR, Sedor JR. Kidney disease, genotype and the pathogenesis of vasculopathy. Curr Opin Nephrol Hypertens. 2003;12(1):71–8.

    Article  CAS  PubMed  Google Scholar 

  • Jones CAKA, Rogus J, Xue JL, Collins A, Warram JH. Epidemic of end-stage renal disease in people with diabetes in the United States population: do we know the cause? Kidney Int. 2005;67:1684–91.

    Article  PubMed  Google Scholar 

  • Kanwar YS, et al. A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu Rev Pathol. 2011;6:395–423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato M, Zhang J, Wang M, Lanting L, Yuan H, Rossi JJ, et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci U S A. 2007;104(9):3432–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato M, Putta S, Wang M, Yuan H, Lanting L, Nair I, et al. TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat Cell Biol. 2009;11(7):881–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato M, et al. A microRNA circuit mediates transforming growth factor-beta1 autoregulation in renal glomerular mesangial cells. Kidney Int. 2011;80(4):358–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DH, et al. MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci U S A. 2008;105(42):16230–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv LL, Cao Y, Liu D, Xu M, Liu H, Tang RN, Ma KL, Liu BC. Isolation and quantification of microRNAs from urinary exosomes/microvesicles for biomarker discovery. Int J Biol Sci. 2013;9(10):1021–31.

    Article  PubMed  PubMed Central  Google Scholar 

  • McCullough K, Sharma P, Ali T, Khan I, Smith WC, MacLeod A, Black C. Measuring the population burden of chronic kidney disease: a systematic literature review of the estimated prevalence of impaired kidney function. Nephrol Dial Transplant. 2012;27(5):1812–21.

    Article  PubMed  Google Scholar 

  • Merchant ML, Powell DW, Wilkey DW, et al. Microfiltration isolation of human urinary exosomes for characterization by MS. Proteomics Clin Appl. 2010;4:84–96.

    Article  CAS  PubMed  Google Scholar 

  • Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A. 2004;101:13368–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putta S, et al. Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. J Am Soc Nephrol. 2012;23(3):458–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rood IM, Deegens JK, Merchant ML, et al. Comparison of three methods for isolation of urinary microvesicles to identify biomarkers of nephrotic syndrome. Kidney Int. 2010;78:810–6.

    Article  CAS  PubMed  Google Scholar 

  • Taylor DD, Zacharias W, Gercel-Taylor C. Exosome isolation for proteomic analyses and RNA profiling. Methods Mol Biol. 2011;728:235–46.

    Article  CAS  PubMed  Google Scholar 

  • Villeneuve LM, Natarajan R. The role of epigenetics in the pathology of diabetic complications. Am J Physiol Renal Physiol. 2010;299(1):F14–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villeneuve LM, Reddy MA, Natarajan R. Epigenetics: deciphering its role in diabetes and its chronic complications. Clin Exp Pharmacol Physiol. 2011;38(7):401–9.

    Article  CAS  PubMed Central  Google Scholar 

  • Wang Q, et al. MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. Faseb J. 2008;22(12):4126–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94(3):311–21.

    Article  PubMed  Google Scholar 

  • Zhou H, Yuen PS, Pisitkun T, et al. Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery. Kidney Int. 2006;69:1471–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna K. DiStefano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science Business Media Dordrecht (outside the USA)

About this entry

Cite this entry

DiStefano, J.K., Ravi, R.K., Khosroheidari, M. (2015). Urinary Exosomes as Potential Source for Identification of Biomarkers for Kidney Damage: Comparing Methodologies. In: Preedy, V., Patel, V. (eds) General Methods in Biomarker Research and their Applications. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7696-8_47

Download citation

Publish with us

Policies and ethics