Skip to main content

Biomarkers in Neonatology

  • Reference work entry
  • First Online:
  • 2431 Accesses

Abstract

The rapid increase in knowledge on basic biological research together with the development of high-technology diagnostic systems significantly contributes to gains expectancy in neonatal life. However, new efforts should be done in reducing time for translational research. The outcome of critically ill newborns such as septic newborns or newborns with acute kidney injury may be substantially improved by the routine use of novel biomarkers; they should demonstrate a rapid sustained increase to allow early detection of the acute disease within the critical time window. Additional critical factors should be the amount of release proportional to disease extent and the speed of assay. Three main factors must be carefully taken into account before addressing clinical significance to a biomarker: (a) the aim to be achieved by using a biomarker in clinical practice, (b) the nature of the disease or disorder, and (c) the population. No hypothesis about the effectiveness of a test can be formulated without knowing its purpose or objective since purpose is inherent in the formal definition of the effectiveness of a healthcare intervention. There is the need to introduce a new generation of biomarkers in clinical practice also for developing and commercializing new low-cost medical devices, easily usable in low-income countries. Proteomic approaches move a step beyond genomic studies and screen the actual proteins and peptides present in a sample. Metabolomics has several strengths compared with other “omics”; one of the most important strengths is that data acquisition does not require a priori knowledge on metabolites involved in any pathological condition: thus, data analysis may lead to the discovery of markers that were not previously considered. In the near future, advances in knowledge and technologies will lead to a revolution in healthcare, integrating several sets of data in a single patient related with the severity and the prognosis of diseases. In this scenario, characterized by the clinical application of system biology, proteomics and metabolomics will play a major role, improving neonatal care and survival of critically ill babies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

1H NMR:

Proton Nuclear Magnetic Resonance

AAP:

Alanine Aminopeptidase

AKD:

Acute Kidney Disease and Disorder

AKI:

Acute Kidney Injury

ALP:

Alkaline Phosphatase

ATN:

Acute Tubular Necrosis

BPI:

Bactericidal/Permeability-Increasing Protein

CE:

Capillary Electrophoresis

CETP:

Cholesteryl Ester-Binding Protein

CKD:

Chronic Kidney Disease

CRP:

C-Reactive Protein

CYR61:

Cysteine-Rich Protein 61

DRF:

Differential Renal Function

ELBW:

Extremely Low Birth Weight

EMA:

European Medicines Agency

EOS:

Early-Onset Sepsis

FDA:

US Food and Drug Administration

GA:

Gestational Age

GC:

Gas Chromatography

GFR:

Glomerular Filtration Rate

GPI:

Glycosylphosphatidylinositol

HN:

Hydronephrosis

HNL:

Human Neutrophil Lipocalin

IFABP:

Intestinal- and Liver-Specific Fatty Acid-Binding Proteins

IUGR:

Intrauterine Growth Restriction

KDIGO:

Kidney Disease: Improving Global Outcomes

KIM-1:

Kidney Injury Molecule 1

LBP:

Lipopolysaccharide Binding Protein

LBW:

Low Birth Weight

LC:

Liquid Chromatography

LMW:

Low Molecular Weight

LOS:

Late-Onset Sepsis

LPS:

Lipopolysaccharides

MALDI-TOF:

Matrix-Assisted Laser Desorption and Ionization Time-of-Flight

MAMPs:

Microbial-Associated Molecular Patterns

MS:

Mass Spectrometry

NAG:

N-Acetyl-β-d-Glucosaminidase

NEC:

Necrotizing Enterocolitis

NGAL:

Neutrophil Gelatinase-Associated Lipocalin

NICU:

Neonatal Intensive Care Unit

PAF:

Platelet-Activating Factor

PCT:

Procalcitonin

PLS-DA:

Projection to Latent Structures for Discriminant Analysis

PLTP:

Phospholipid Transfer Protein

PSTC:

Predictive Safety Testing Consortium

RDS:

Respiratory Distress Syndrome

ROC:

Receiver Operating Characteristic

sCD14-ST:

Soluble CD14 Subtype, Presepsin

SELDI-TOF:

Surface-Enhanced Laser Desorption and Ionization Time-of-Flight

SGA:

Small for Gestational Age

UPJO:

Ureteropelvic Junction Obstruction

VLBW:

Very Low Birth Weight

γGT:

γ-Glutamyl Transpeptidase

References

  • Amin RP, Vickers AE, Sistare F, et al. Identification of putative gene based markers of renal toxicity. Environ Health Perspect. 2004;112:465–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Askenazi DJ, Koralkar R, Levitan EB, et al. Baseline values of candidate urine acute kidney injury biomarkers vary by gestational age in premature infants. Pediatr Res. 2011;70:302–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bazil V, Strominger JL. Shedding as a mechanism of down-modulation of CD14 on stimulated human monocytes. J Immunol. 1991;147:1567–74.

    CAS  PubMed  Google Scholar 

  • Beck S, Wojdyla D, Say L, et al. The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bull World Health Organ. 2010;88:31–8.

    Article  PubMed  Google Scholar 

  • Berner R, Fürll B, Stelter F, et al. Elevated levels of lipopolysaccharide-binding protein and soluble CD14 in plasma in neonatal early-onset sepsis. Clin Diagn Lab Immunol. 2002;9:440–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89–95.

    Article  Google Scholar 

  • Bonventre JV. Kidney injury molecule-1 (KIM-1): a urinary biomarker and much more. Nephrol Dial Transplant. 2009;24:3265–8.

    Article  CAS  PubMed  Google Scholar 

  • Bonventre JV, Vaidya VS, Schmouder R, et al. Next generation biomarkers for detecting kidney toxicity. Nat Biotechnol. 2010;28:436–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buyse M, Sargent DJ, Grothey A, et al. Biomarkers and surrogate end points – the challenge of statistical validation. Nat Rev Clin Oncol. 2010;7:309–17.

    Article  PubMed  Google Scholar 

  • Carroll D, Corfield A, Spicer R, et al. Fecal calprotectin concentrations and diagnosis of necrotizing enterocolitis. Lancet. 2003;361:310–1.

    Article  CAS  PubMed  Google Scholar 

  • Chambers JC, Zhang W, Lord GM, et al. Genetic loci influencing kidney function and chronic kidney disease. Nat Genet. 2010;42:373–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiesa C, Natale F, Pascone R, et al. C reactive protein and procalcitonin: reference intervals for preterm and term newborns during the early neonatal period. Clin Chim Acta. 2011;412:1053–9.

    Article  CAS  PubMed  Google Scholar 

  • Colburn WA. Optimizing the use of biomarkers, surrogate endpoints, and clinical endpoints for more efficient drug development. J Clin Pharmacol. 2000;40:1419–27.

    CAS  PubMed  Google Scholar 

  • Cowland JB, Borregaard N. Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase-associated lipocalin from humans. Genomics. 1997;45:17–23.

    Article  CAS  PubMed  Google Scholar 

  • Dale I, Fagerhol MK, Naesgaard I. Purification and partial characterization of a highly immunogenic human leukocyte protein, the L1 antigen. Eur J Biochem. 1983;134:1–6.

    Article  CAS  PubMed  Google Scholar 

  • Dessì A, Atzori L, Noto A, et al. Metabolomics in newborns with intrauterine growth retardation (IUGR): urine reveals markers of metabolic syndrome. J Matern Fetal Neonatal Med. 2011;24(Suppl 2):35–9.

    Article  PubMed  Google Scholar 

  • Devarajan P. Neutrophil gelatinase-associated lipocalin: new paths for an old shuttle. Cancer Ther. 2007;5:463–70.

    PubMed  PubMed Central  Google Scholar 

  • Dieterle F, Sistare F, Goodsaid F, et al. Renal biomarker qualification submission: a dialog between the FDA-EMEA and Predictive Safety Testing Consortium. Nat Biotechnol. 2010;28:455–62.

    Article  CAS  PubMed  Google Scholar 

  • Endo S, Inada K, Kasai T, et al. Soluble CD14 (sCD14) levels in patients with multiple organ failure (MOF). Res Commun Chem Pathol Pharmacol. 1994;84:17–25.

    CAS  PubMed  Google Scholar 

  • Endo S, Takahashi G, Shozushima T, et al. Usefulness of presepsin (soluble CD14 Subtype) as a diagnostic marker of sepsis. JJAAM. 2012;23:27–38.

    Google Scholar 

  • Favretto D, Cosmi E, Ragazzi E, et al. Cord blood metabolomic profiling in intrauterine growth restriction. Anal Bioanal Chem. 2012;402:1109–21.

    Article  CAS  PubMed  Google Scholar 

  • Flo TH, Smith KD, Sato S, et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature. 2004;432(7019):917–21.

    Article  CAS  PubMed  Google Scholar 

  • Groselj-Grenc M, Ihan A, Pavcnik-Arnol M, et al. Neutrophil and monocyte CD64 indexes, lipopolysaccharide-binding protein, procalcitonin and C-reactive protein in sepsis of critically ill neonates and children. Intensive Care Med. 2009;35:1950–8.

    Article  CAS  PubMed  Google Scholar 

  • Haase M, Bellomo R, Devarajan P, et al. Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis. 2009;54:1012–24.

    Article  CAS  PubMed  Google Scholar 

  • Hall MH, Danielian P, Lamont RF. The importance of preterm birth. In: Elger MG, Romero R, Lamont RF, editors. Preterm labor. New York: Churchill Livingstone; 1993. p. 1–28.

    Google Scholar 

  • Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143:29–36.

    Article  CAS  PubMed  Google Scholar 

  • Horgan RP, Broadhurst DI, Walsh SK, et al. Metabolic profiling uncovers a phenotypic signature of small for gestational age in early pregnancy. J Proteome Res. 2011;10:3660–73.

    Article  CAS  PubMed  Google Scholar 

  • Huynh TK, Bateman DA, Parravicini E, et al. Reference values of urinary neutrophil gelatinase-associated lipocalin in very low birth weight infants. Pediatr Res. 2009;66:528–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichimura T, Bonventre JV, Bailly V, et al. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem. 1998;273:4135–42.

    Article  CAS  PubMed  Google Scholar 

  • Ivorra C, García-Vicent C, Chaves FJ, et al. Metabolomic profiling in blood from umbilical cords of low birth weight newborns. J Transl Med. 2012;10:142.

    Article  PubMed  PubMed Central  Google Scholar 

  • James M, Bouchard J, Ho J, et al. Canadian Society of Nephrology commentary on the 2012 KDIGO clinical practice guideline for acute kidney injury. Am J Kidney Dis. 2013;61:673–85.

    Article  PubMed  Google Scholar 

  • Jerala R. Structural biology of the LPS recognition. Int J Med Microbiol. 2007;297:353–63.

    Article  CAS  PubMed  Google Scholar 

  • Josefsson S, Bunn SK, Domellöf M. Fecal calprotectin in very low birth weight infants. J Pediatr Gastroenterol Nutr. 2007;44:407–13.

    Article  CAS  PubMed  Google Scholar 

  • Kaplan JM, Wong HR. Biomarker discovery and development in pediatric critical care medicine. Pediatr Crit Care Med. 2011;12:165–73.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kellum JA, Bellomo R, Ronco C. Definition and classification of acute kidney injury. Nephron Clin Pract. 2008;109:182–7.

    Article  Google Scholar 

  • Kidney Disease: Improving Global Outcomes (KDIGO), Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2:1–138.

    Article  Google Scholar 

  • Kjeldsen L, Johnsen AH, Sengeløv H, et al. Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem. 1993;268:10425–32.

    CAS  PubMed  Google Scholar 

  • Lane BR. Molecular markers of kidney injury. Urol Oncol. 2013;31:682–5.

    Article  CAS  PubMed  Google Scholar 

  • Lavery AP, Meinzen-Derr JK, Anderson E, et al. Urinary NGAL in premature infants. Pediatr Res. 2008;64:423–8.

    Article  CAS  PubMed  Google Scholar 

  • Lisowska-Myjak B. Serum and urinary biomarkers of acute kidney injury. Blood Purif. 2010;29:357–65.

    Article  CAS  PubMed  Google Scholar 

  • Metha RL. Biomarker explorations in acute kidney injury: the journey continues. Kidney Int. 2011;80:332–4.

    Article  Google Scholar 

  • Mishra J, Dent C, Tarabishi R, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365(9466):1231–8.

    Article  CAS  PubMed  Google Scholar 

  • Mussap M. Laboratory medicine in neonatal sepsis and inflammation. J Matern Fetal Neonatal Med. 2012;25(Suppl 4):32–4.

    PubMed  Google Scholar 

  • Mussap M, Noto A, Fravega M, Fanos V. Soluble CD14 subtype presepsin (sCD14-ST) and lipopolysaccharide binding protein (LBP) in neonatal sepsis: new clinical and analytical perspectives for two old biomarkers. J Matern Fetal Neonatal Med. 2011;24(Suppl 2):12–4.

    Article  PubMed  Google Scholar 

  • Mussap M, Antonucci R, Noto A, et al. The role of metabolomics in neonatal and pediatric laboratory medicine. Clin Chim Acta. 2013;426:127–38.

    Article  CAS  PubMed  Google Scholar 

  • Neu J, Walker A. Necrotizing enterocolitis. N Engl J Med. 2011;364:255–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng PC, Li K, Leung TF, et al. Early prediction of sepsis-induced disseminated intravascular coagulation with interleukin-10, interleukin-6, and RANTES in preterm infants. Clin Chem. 2006;52:1181–9.

    Article  CAS  PubMed  Google Scholar 

  • Okamura Y, Yokoi H. Development of a point-of-care assay system for measurement of presepsin (sCD14-ST). Clin Chim Acta. 2011;412:2157–61.

    Article  CAS  PubMed  Google Scholar 

  • Opal SM, Scannon PJ, Vincent JL, et al. Relationship between plasma levels of lipopolysaccharide (LPS) and LPS-binding protein in patients with severe sepsis and septic shock. J Infect Dis. 1999;180:1584–9.

    Article  CAS  PubMed  Google Scholar 

  • Palevsky PM, Liu KD, Brophy PD, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for acute kidney injury. Am J Kidney Dis. 2013;61:649–72.

    Article  PubMed  Google Scholar 

  • Paragas N, Qiu A, Zhang Q, et al. The Ngal reporter mouse detects the response of the kidney to injury in real time. Nat Med. 2011;17:216–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park KM, Byun JY, Kramers C, et al. Inducible nitric-oxide synthase is an important contributor to prolonged protective effects of ischemic preconditioning in the mouse kidney. J Biol Chem. 2003;278:27256–66.

    Article  CAS  PubMed  Google Scholar 

  • Parravicini E, Fromm F. Necrotizing enterocolitis. In: Buonocore G, Bracci R, Weinding M, editors. Neonatology. 1st ed. Milan: Springer; 2012. p. 724–34.

    Chapter  Google Scholar 

  • Pavcnik-Arnol M, Hojker S, Derganc M. Lipopolysaccharide-binding protein, lipopolysaccharide, and soluble CD14 in sepsis of critically ill neonates and children. Intensive Care Med. 2007;33:1025–32.

    Article  CAS  PubMed  Google Scholar 

  • Petricoin EF, Ardekani AM, Hitt BA, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet. 2002;359(9306):572–7.

    Article  CAS  PubMed  Google Scholar 

  • Russell JA. Management of sepsis. N Engl J Med. 2006;355:1699–713.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Ott KM, Mori K, Kalandadze A, et al. Neutrophil gelatinase associated lipocalin-mediated iron traffic in kidney epithelia. Curr Opin Nephrol Hypertens. 2006;15:442–9.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Ott KM, Mori K, Li JY, et al. Dual action of neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol. 2007;18:407–13.

    Article  CAS  PubMed  Google Scholar 

  • Schnackenberg LK. Global metabolic profiling and its role in systems biology to advance personalized medicine in the 21st century. Expert Rev Mol Diagn. 2007;7:247–59.

    Google Scholar 

  • Skinner MK. Environmental epigenomics and disease susceptibility. EMBO Rep. 2011;12:620–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spada S, Cuccu A, Mussap M, et al. Reliability of procalcitonin in neonatology. Experience in 59 preterm newborns. J Matern Fetal Neonatal Med. 2009;22(Suppl 3):96–101.

    Article  CAS  PubMed  Google Scholar 

  • Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS. 2010;5:463–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tea I, Le Gall G, Küster A, et al. 1H-NMR-based metabolic profiling of maternal and umbilical cord blood indicates altered materno-foetal nutrient exchange in preterm infants. PLoS One. 2012;7(1):e29947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thuijls G, Derikx JP, van Wijck K, et al. Non-invasive markers for early diagnosis and determination of the severity of necrotizing enterocolitis. Ann Surg. 2010;251:1174–80.

    Article  PubMed  Google Scholar 

  • Viau A, El Karoui K, Laouari D, et al. Lipocalin 2 is essential for chronic kidney disease progression in mice and humans. J Clin Invest. 2010;120:4065–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waikar SS, Bonventre JV. Creatinine kinetics and the definition of acute kidney injury. J Am Soc Nephrol. 2009;20:672–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasilewska A, Taranta-Janusz K, Dębek W, et al. KIM-1 and NGAL: new markers of obstructive nephropathy. Pediatr Nephrol. 2011;26:579–86.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu EY, Schaefer WH, Xu Q. Metabolomics in pharmaceutical research and development: metabolites, mechanisms and pathways. Curr Opin Drug Discov Devel. 2009;12:40–52.

    PubMed  Google Scholar 

  • Yaegashi Y, Shirakawa K, Sato N, et al. Evaluation of a newly identified soluble CD14 subtype as a marker for sepsis. J Infect Chemother. 2005;11:234–8.

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Smith PB, Goldberg RN, et al. Dynamic change of fecal calprotectin in very low birth weight infants during the first month of life. Neonatology. 2008;94:267–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zappitelli M. Epidemiology and diagnosis of acute kidney injury. Semin Nephrol. 2008;28:436–46.

    Article  PubMed  Google Scholar 

  • Zhang Z, Humphreys BD, Bonventre JV. Shedding of the urinary biomarker kidney injury molecule-1 (KIM-1) is regulated by MAP kinases and juxtamembrane region. J Am Soc Nephrol. 2007;18:2704–14.

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Vaidya VS, Brown RP, et al. Comparison of kidney injury molecule-1 and other nephrotoxicity biomarkers in urine and kidney following acute exposure to gentamicin, mercury, and chromium. Toxicol Sci. 2008;101:159–70.

    Article  CAS  PubMed  Google Scholar 

  • Zimmern RL. Testing challenges: evaluation of novel diagnostics and molecular biomarkers. Clin Med. 2009;9:68–73.

    Article  Google Scholar 

  • Zoppelli L, Güttel C, Bittrich HJ, et al. Fecal calprotectin concentrations in premature infants have a lower limit and show postnatal and gestational age dependence. Neonatology. 2012;102:68–74.

    Article  CAS  PubMed  Google Scholar 

  • Zweigner J, Schumann RR, Weber JR. The role of lipopolysaccharide-binding protein in modulating the innate immune response. Microbes Infect. 2006;8:946–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Mussap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Mussap, M., Fanos, V. (2015). Biomarkers in Neonatology. In: Preedy, V., Patel, V. (eds) General Methods in Biomarker Research and their Applications. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7696-8_46

Download citation

Publish with us

Policies and ethics