Skip to main content

Biomarkers of Necrosis and Myocardial Remodeling

  • Reference work entry
  • First Online:
General Methods in Biomarker Research and their Applications

Abstract

Multiple biomarkers have helped us to understand the pathophysiology of cardiovascular medicine, being ischemic heart disease and heart failure the most active fields in which biomarkers have shown to be useful. Furthermore, in several cardiovascular diseases, as heart failure, hypertrophic or dilated cardiomyopathies have demonstrated the presence of remodeling in both ventricles, with mainly changes in the extracellular matrix. The initial post-MI phase of left ventricular remodeling is resulted from a fibrotic repair of the necrotic area with scar formation, elongation, and thinning of the infarcted zone.

This book chapter summarizes a review about biomarkers of necrosis and myocardial remodeling and all the knowledge that their study has improved the complex role of this cardiac pathology. The continued research of new molecules that helped us to understand necrosis and remodeling focuses our attention in different groups of biomarkers as troponins, growth factors, matrix metalloproteinases, and collagen peptides. This chapter is also focused on how the renin-angiotensin system influences the cardiac remodeling and the role of microRNAs in extracellular changes.

Funding: This work was partially supported by Sociedad Española de Cardiología, RD06/0014/039, (RECAVA) from ISCIII, Beca Cajamurcia-FFIS 2010, and PI081531-FEDER from ISCIII.

Competing interests: None declared in relation to this manuscript for all authors. JAV and DHR have received funding for research from Abbott. MV has received funding for research and consultancy from Abbott and Boston Scientific. FM has received funding for research, consultancy, and lecturing from Abbott, Boston Scientific, Bayer, AstraZeneca, Daiichi-Sankyo, BMS/Pfizer, and Boehringer Ingelheim.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anand IS, Kempf T, Rector TS, et al. Serial measurement of growth-differentiation factor-15 in heart failure: relation to disease severity and prognosis in the Valsartan Heart Failure Trial. Circulation. 2010;122:1387–95.

    Article  CAS  PubMed  Google Scholar 

  • Apple FS, Murakami M, Panteghini M, et al. International survey on the use of cardiac markers. Clin Chem. 2001;47:587–8.

    CAS  PubMed  Google Scholar 

  • Bagga S, Bracht J, Hunter S, et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell. 2005;122:553–63.

    Article  CAS  PubMed  Google Scholar 

  • Barry SP, Davidson SM, Townsend PA. Molecular regulation of cardiac hypertrophy. Int J Biochem Cell Biol. 2008;40:2023–39.

    Article  CAS  PubMed  Google Scholar 

  • Bogdanov DV. Spherical remodeling of left atrium in hypertrophic nonobstructive cardiomyopathy. Kardiologiia. 2012;52:49–52.

    CAS  PubMed  Google Scholar 

  • Callis TE, Pandya K, Seok HY, et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest. 2009;119:2772–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Care A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007;13:613–18.

    Article  CAS  PubMed  Google Scholar 

  • Chen JF, Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006;38:228–33.

    Article  CAS  PubMed  Google Scholar 

  • Chinchilla A, Lozano E, Daimi H, et al. MicroRNA profiling during mouse ventricular maturation: a role for miR-27 modulating Mef2c expression. Cardiovasc Res. 2011;89:98–108.

    Article  CAS  PubMed  Google Scholar 

  • Cohen MV, Yang XM, Neumann T, Heusch G, Downey JM. Favorable remodeling enhances recovery of regional myocardial function in the weeks after infarction in ischemically preconditioned hearts. Circulation. 2000;102:579–83.

    Article  CAS  PubMed  Google Scholar 

  • da Costa Martins PA, Bourajjaj M, Gladka M, et al. Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation. 2008;118:1567–76.

    Article  PubMed  Google Scholar 

  • Daniels LB, Maisel AS. Natriuretic peptides. J Am Coll Cardiol. 2007;50:2357–68.

    Article  CAS  PubMed  Google Scholar 

  • Delcayre C, Silvestre JS. Aldosterone and the heart: towards a physiological function? Cardiovasc Res. 1999;43:7–12.

    Article  CAS  PubMed  Google Scholar 

  • Diez J, Laviades C. Monitoring fibrillar collagen turnover in hypertensive heart disease. Cardiovasc Res. 1997;35:202–5.

    Article  CAS  PubMed  Google Scholar 

  • Diez J, Panizo A, Gil MJ, Monreal I, Hernandez M, Pardo MJ. Serum markers of collagen type I metabolism in spontaneously hypertensive rats: relation to myocardial fibrosis. Circulation. 1996;93:1026–32.

    Article  CAS  PubMed  Google Scholar 

  • Divakaran V, Adrogue J, Ishiyama M, et al. Adaptive and maladaptive effects of SMAD3 signaling in the adult heart after hemodynamic pressure overloading. Circ Heart Fail. 2009;2:633–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duisters RF, Tijsen AJ, Schroen B, et al. miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res. 2009;104:170–8. 6p.

    Article  CAS  PubMed  Google Scholar 

  • Eggers KM, Kempf T, Allhoff T, Lindahl B, Wallentin L, Wollert KC. Growth-differentiation factor-15 for early risk stratification in patients with acute chest pain. Eur Heart J. 2008;29:2327–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eggers KM, Kempf T, Lagerqvist B, et al. Growth-differentiation factor-15 for long-term risk prediction in patients stabilized after an episode of non-ST-segment-elevation acute coronary syndrome. Circ Cardiovasc Genet. 2010;3:88–96.

    Article  CAS  PubMed  Google Scholar 

  • Frangogiannis NG, Smith CW, Entman ML. The inflammatory response in myocardial infarction. Cardiovasc Res. 2002;53:31–47.

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Karin M. Missing pieces in the NF-kappaB puzzle. Cell. 2002;109(Suppl):S81–96.

    Article  CAS  PubMed  Google Scholar 

  • Grandin EW, Jarolim P, Murphy SA, et al. Galectin-3 and the development of heart failure after acute coronary syndrome: pilot experience from PROVE IT-TIMI 22. Clin Chem. 2012;58:267–73.

    Article  CAS  PubMed  Google Scholar 

  • Granger CB, McMurray JJ, Yusuf S, et al. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function intolerant to angiotensin-converting-enzyme inhibitors: the CHARM-Alternative trial. Lancet. 2003;362:772–6.

    Article  CAS  PubMed  Google Scholar 

  • Gurantz D, Cowling RT, Varki N, Frikovsky E, Moore CD, Greenberg BH. IL-1beta and TNF-alpha upregulate angiotensin II type 1 (AT1) receptors on cardiac fibroblasts and are associated with increased AT1 density in the post-MI heart. J Mol Cell Cardiol. 2005;38:505–15.

    Article  CAS  PubMed  Google Scholar 

  • Heger J, Schiegnitz E, von WD, Anwar MM, Piper HM, Euler G. Growth differentiation factor 15 acts anti-apoptotic and pro-hypertrophic in adult cardiomyocytes. J Cell Physiol. 2010;224:120–6.

    CAS  PubMed  Google Scholar 

  • Hill JA, Olson EN. Cardiac plasticity. N Engl J Med. 2008;358:1370–80.

    Article  CAS  PubMed  Google Scholar 

  • Ho CY, Lopez B, Coelho-Filho OR, et al. Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. N Engl J Med. 2010;363:552–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda S, He A, Kong SW, et al. MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol Cell Biol. 2009;29:2193–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwata M, Cowling RT, Yeo SJ, Greenberg B. Targeting the ACE2-Ang-(1-7) pathway in cardiac fibroblasts to treat cardiac remodeling and heart failure. J Mol Cell Cardiol. 2011;51:542–7.

    Article  CAS  PubMed  Google Scholar 

  • Jabre P, Roger VL, Murad MH, et al. Mortality associated with atrial fibrillation in patients with myocardial infarction: a systematic review and meta-analysis. Circulation. 2011;123:1587–93.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaffe AS, Babuin L, Apple FS. Biomarkers in acute cardiac disease: the present and the future. J Am Coll Cardiol. 2006;48:1–11.

    Article  CAS  PubMed  Google Scholar 

  • Januzzi JL, Lewandrowski K, MacGillivray TE, et al. A comparison of cardiac troponin T and creatine kinase-MB for patient evaluation after cardiac surgery. J Am Coll Cardiol. 2002;39:1518–23.

    Article  CAS  PubMed  Google Scholar 

  • Ji R, Cheng Y, Yue J, et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res. 2007;100:1579–88.

    Article  CAS  PubMed  Google Scholar 

  • Jordan A, Roldan V, Garcia M, et al. Matrix metalloproteinase-1 and its inhibitor, TIMP-1, in systolic heart failure: relation to functional data and prognosis. J Intern Med. 2007;262:385–92.

    Article  CAS  PubMed  Google Scholar 

  • Jugdutt BI. Remodeling of the myocardium and potential targets in the collagen degradation and synthesis pathways. Curr Drug Targets Cardiovasc Haematol Disord. 2003;3:1–30.

    Article  CAS  PubMed  Google Scholar 

  • Kempf T, Sinning JM, Quint A, et al. Growth-differentiation factor-15 for risk stratification in patients with stable and unstable coronary heart disease: results from the AtheroGene study. Circ Cardiovasc Genet. 2009;2:286–92.

    Article  CAS  PubMed  Google Scholar 

  • Kim HE, Dalal SS, Young E, Legato MJ, Weisfeldt ML, D’Armiento J. Disruption of the myocardial extracellular matrix leads to cardiac dysfunction. J Clin Invest. 2000;106:857–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konstam MA, Kramer DG, Patel AR, Maron MS, Udelson JE. Left ventricular remodeling in heart failure: current concepts in clinical significance and assessment. JACC Cardiovasc Imaging. 2011;4:98–108.

    Article  PubMed  Google Scholar 

  • Lewandrowski K, Chen A, Januzzi J. Cardiac markers for myocardial infarction. A brief review. Am J Clin Pathol. 2002;118(Suppl):S93–9.

    Article  PubMed  Google Scholar 

  • Li Y, Jian Z, Yang ZY, et al. Increased expression of connective tissue growth factor and transforming growth factor-beta-1 in atrial myocardium of patients with chronic atrial fibrillation. Cardiology. 2013;124:233–40.

    Article  CAS  PubMed  Google Scholar 

  • Lim H, Zhu YZ. Role of transforming growth factor-beta in the progression of heart failure. Cell Mol Life Sci. 2006;63:2584–96.

    Article  CAS  PubMed  Google Scholar 

  • Lin YH, Lin LY, Wu YW, et al. The relationship between serum galectin-3 and serum markers of cardiac extracellular matrix turnover in heart failure patients. Clin Chim Acta. 2009;409:96–9.

    Article  CAS  PubMed  Google Scholar 

  • Lin YH, Lin C, Lo MT, et al. The relationship between aminoterminal propeptide of type III procollagen and heart rate variability parameters in heart failure patients: a potential serum marker to evaluate cardiac autonomic control and sudden cardiac death. Clin Chem Lab Med. 2010;48:1821–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu N, Bezprozvannaya S, Williams AH, et al. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 2008;22:3242–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu YH, D’Ambrosio M, Liao TD, et al. N-acetyl-seryl-aspartyl-lysyl-proline prevents cardiac remodeling and dysfunction induced by galectin-3, a mammalian adhesion/growth-regulatory lectin. Am J Physiol Heart Circ Physiol. 2009;296:H404–12.

    Article  CAS  PubMed  Google Scholar 

  • Lombardi R, Betocchi S, Losi MA, et al. Myocardial collagen turnover in hypertrophic cardiomyopathy. Circulation. 2003;108:1455–60.

    Article  CAS  PubMed  Google Scholar 

  • Lopez B, Gonzalez A, Querejeta R, Larman M, Diez J. Alterations in the pattern of collagen deposition may contribute to the deterioration of systolic function in hypertensive patients with heart failure. J Am Coll Cardiol. 2006;48:89–96.

    Article  CAS  PubMed  Google Scholar 

  • Lopez B, Gonzalez A, Diez J. Circulating biomarkers of collagen metabolism in cardiac diseases. Circulation. 2010;121:1645–54.

    Article  PubMed  Google Scholar 

  • Luo X, Zhang H, Xiao J, Wang Z. Regulation of human cardiac ion channel genes by microRNAs: theoretical perspective and pathophysiological implications. Cell Physiol Biochem. 2010;25:571–86.

    Article  CAS  PubMed  Google Scholar 

  • Merkle S, Frantz S, Schon MP, et al. A role for caspase-1 in heart failure. Circ Res. 2007;100:645–53.

    Article  CAS  PubMed  Google Scholar 

  • Mezzaroma E, Toldo S, Farkas D, et al. The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc Natl Acad Sci U S A. 2011;108:19725–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montoro-Garcia S, Hernandez-Romero D, Jover E, et al. Growth differentiation factor-15, a novel biomarker related with disease severity in patients with hypertrophic cardiomyopathy. Eur J Intern Med. 2012;23:169–74.

    Article  CAS  PubMed  Google Scholar 

  • Moreno V, Hernandez-Romero D, Vilchez JA, et al. Serum levels of high-sensitivity troponin T: a novel marker for cardiac remodeling in hypertrophic cardiomyopathy. J Card Fail. 2010;16:950–6.

    Article  CAS  PubMed  Google Scholar 

  • Omland T, de Lemos JA, Sabatine MS, et al. A sensitive cardiac troponin T assay in stable coronary artery disease. N Engl J Med. 2009;361:2538–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA. Controversies in ventricular remodelling. Lancet. 2006;367:356–67.

    Article  PubMed  Google Scholar 

  • Orenes-Pinero E, Montoro-Garcia S, Patel JV, Valdes M, Marin F, Lip GY. Role of microRNAs in cardiac remodelling: new insights and future perspectives. Int J Cardiol. 2013;167:1651–9

    Google Scholar 

  • Pagliaro P, Penna C. Rethinking the renin-angiotensin system and its role in cardiovascular regulation. Cardiovasc Drugs Ther. 2005;19:77–87.

    Article  CAS  PubMed  Google Scholar 

  • Pascual-Figal DA, Manzano-Fernandez S, Pastor F, et al. Troponin-T monitoring in outpatients with nonischemic heart failure. Rev Esp Cardiol. 2008;61:678–86.

    Article  PubMed  Google Scholar 

  • Pasqui AL, Di RM, Maffei S, et al. Pro/anti-inflammatory cytokine imbalance in postischemic left ventricular remodeling. Mediators Inflamm. 2010;2010:974694.

    Article  PubMed  Google Scholar 

  • Pegg TJ, Maunsell Z, Karamitsos TD, et al. Utility of cardiac biomarkers for the diagnosis of type V myocardial infarction after coronary artery bypass grafting: insights from serial cardiac MRI. Heart. 2011;97:810–16.

    Article  CAS  PubMed  Google Scholar 

  • Pieroni M, Bellocci F, Sanna T, et al. Increased brain natriuretic peptide secretion is a marker of disease progression in nonobstructive hypertrophic cardiomyopathy. J Card Fail. 2007;13:380–8.

    Article  CAS  PubMed  Google Scholar 

  • Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized aldactone evaluation study investigators. N Engl J Med. 1999;341:709–17.

    Article  CAS  PubMed  Google Scholar 

  • Pop GA, Cramer E, Timmermans J, Bos H, Verheugt FW. Troponin I release at rest and after exercise in patients with hypertrophic cardiomyopathy and the effect of betablockade. Arch Cardiol Mex. 2006;76:415–18.

    CAS  PubMed  Google Scholar 

  • Richardson K, Lai CQ, Parnell LD, Lee YC, Ordovas JM. A genome-wide survey for SNPs altering microRNA seed sites identifies functional candidates in GWAS. BMC Genomics. 2011;12:504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roldan V, Marin F, Gimeno JR, et al. Matrix metalloproteinases and tissue remodeling in hypertrophic cardiomyopathy. Am Heart J. 2008;156:85–91.

    Article  CAS  PubMed  Google Scholar 

  • Roy S, Khanna S, Hussain SR, et al. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res. 2009;82:21–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato Y, Yamada T, Taniguchi R, et al. Persistently increased serum concentrations of cardiac troponin t in patients with idiopathic dilated cardiomyopathy are predictive of adverse outcomes. Circulation. 2001;103:369–74.

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Taniguchi R, Nagai K, et al. Measurements of cardiac troponin T in patients with hypertrophic cardiomyopathy. Heart. 2003a;89:659–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato Y, Taniguchi R, Yamada T, Matsumori A. Measurements of serum cardiac troponin T in patients with heart failure. Am Heart J. 2003b;145:e18.

    Article  PubMed  Google Scholar 

  • Schwartzkopff B, Fassbach M, Pelzer B, Brehm M, Strauer BE. Elevated serum markers of collagen degradation in patients with mild to moderate dilated cardiomyopathy. Eur J Heart Fail. 2002;4:439–54.

    Article  CAS  PubMed  Google Scholar 

  • Shan ZX, Lin QX, Fu YH, et al. Upregulated expression of miR-1/miR-206 in a rat model of myocardial infarction. Biochem Biophys Res Commun. 2009;381:597–601.

    Article  CAS  PubMed  Google Scholar 

  • Sharma UC, Pokharel S, van Brakel TJ, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004;110:3121–8.

    Article  CAS  PubMed  Google Scholar 

  • Shelton RJ, Clark AL, Goode K, Rigby AS, Cleland JG. The diagnostic utility of N-terminal pro-B-type natriuretic peptide for the detection of major structural heart disease in patients with atrial fibrillation. Eur Heart J. 2006;27:2353–61.

    Article  CAS  PubMed  Google Scholar 

  • Shim CY, Ha JW, Choi EY, et al. Relationship between serum biochemical markers of myocardial fibrosis and diastolic function at rest and with exercise in hypertrophic cardiomyopathy. Korean Circ J. 2009;39:519–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spinale FG. Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev. 2007;87:1285–342.

    Article  CAS  PubMed  Google Scholar 

  • Thaman R, Gimeno JR, Reith S, et al. Progressive left ventricular remodeling in patients with hypertrophic cardiomyopathy and severe left ventricular hypertrophy. J Am Coll Cardiol. 2004;44:398–405.

    Article  PubMed  Google Scholar 

  • Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456:980–4.

    Article  CAS  PubMed  Google Scholar 

  • Topper JN. TGF-beta in the cardiovascular system: molecular mechanisms of a context-specific growth factor. Trends Cardiovasc Med. 2000;10:132–7.

    Article  CAS  PubMed  Google Scholar 

  • Trescher K, Bernecker O, Fellner B, et al. Inflammation and postinfarct remodeling: overexpression of IkappaB prevents ventricular dilation via increasing TIMP levels. Cardiovasc Res. 2006;69:746–54.

    Article  CAS  PubMed  Google Scholar 

  • Tsutsui H, Kinugawa S, Matsushima S, Yokota T. Oxidative stress in cardiac and skeletal muscle dysfunction associated with diabetes mellitus. J Clin Biochem Nutr. 2011;48:68–71.

    Article  CAS  PubMed  Google Scholar 

  • van Rooij E, Sutherland LB, Liu N, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A. 2006;103:18255–60.

    Article  PubMed  PubMed Central  Google Scholar 

  • van Rooij E, Sutherland LB, Thatcher JE, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A. 2008;105:13027–32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vilchez JA, Hernandez-Romero D, Ruiz-Espejo F, et al. Collagen peptides, interstitial remodelling and sudden cardiac death in hypertrophic cardiomyopathy. Clin Chem Lab Med. 2011;49:1569–71.

    Article  CAS  PubMed  Google Scholar 

  • Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92:827–39.

    Article  CAS  PubMed  Google Scholar 

  • Volz KA, McGillicuddy DC, Horowitz GL, Sanchez LD. Creatine kinase-MB does not add additional benefit to a negative troponin in the evaluation of chest pain. Am J Emerg Med. 2012;30:188–90.

    Article  PubMed  Google Scholar 

  • Wu AH, Smith A, Wieczorek S, et al. Biological variation for N-terminal pro- and B-type natriuretic peptides and implications for therapeutic monitoring of patients with congestive heart failure. Am J Cardiol. 2003;92:628–31.

    Article  CAS  PubMed  Google Scholar 

  • Xiao J, Yang B, Lin H, Lu Y, Luo X, Wang Z. Novel approaches for gene-specific interference via manipulating actions of microRNAs: examination on the pacemaker channel genes HCN2 and HCN4. J Cell Physiol. 2007;212:285–92.

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Lin H, Xiao J, et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med. 2007;13:486–91.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida Y, Morimoto T, Takaya T, et al. Aldosterone signaling associates with p300/GATA4 transcriptional pathway during the hypertrophic response of cardiomyocytes. Circ J. 2010;74:156–62.

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Ransom JF, Li A, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell. 2007;129:303–17.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

JA Vílchez holds a research grant “Río Hortega” by the Instituto de Salud Carlos III, Madrid, Spain.

Dr. Orenes-Piñero is supported by a postdoctoral contract from Fundación para la Formación e Investigación Sanitarias de la Región de Murcia, Murcia, Spain.

D Hernandez-Romero holds a research grant “Sara Borrell” by the Instituto de Salud Carlos III, Madrid, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Marín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Vílchez, J.A., Orenes-Piñero, E., Hernández-Romero, D., Valdés, M., Marín, F. (2015). Biomarkers of Necrosis and Myocardial Remodeling. In: Preedy, V., Patel, V. (eds) General Methods in Biomarker Research and their Applications. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7696-8_42

Download citation

Publish with us

Policies and ethics