Skip to main content

Cyclophilin A: Novel Biomarker for Oxidative Stress and Cardiovascular Diseases

  • Reference work entry
  • First Online:
General Methods in Biomarker Research and their Applications

Abstract

Intracellular redox status is closely regulated by the balance between oxidant and antioxidant systems, and their imbalance can cause oxidative or reductive stress, leading to cellular damage and dysregulation. Excessive reactive oxygen species (ROS) deteriorates vascular functions and promotes vascular diseases through multiple pathways. Recently, cyclophilin A (CyPA) has been shown to be secreted from vascular smooth muscle cells (VSMC) and to augment the destructive effects of ROS, linking it to the development of many cardiovascular diseases. In the secretion of CyPA, Rho-kinase plays an important role to organize vicious cycle for augmentation of ROS. The important role of Rho-kinase has been established in the pathogenesis of vasospasm, arteriosclerosis, ischemia/reperfusion injury, hypertension, pulmonary hypertension, stroke, and heart failure. Thus, it is important to understand Rho-kinase signaling and the role of downstream effectors such as CyPA in the vascular system in order to develop new therapeutic strategies for cardiovascular diseases. Here, we reported that plasma CyPA levels are increased in patients with coronary artery disease (CAD). Plasma CyPA levels were significantly higher in patients with significant coronary stenosis compared to those without it. A positive correlation was noted between plasma CyPA levels and significant coronary stenosis. The average number of stenotic coronary arteries and the need for coronary intervention were significantly increased in the quartiles of higher CyPA levels. Interestingly, plasma levels of CyPA increased according to the number of atherosclerotic risk factors, all of which induce oxidative stress. Furthermore, plasma levels of CyPA significantly reduced after medical treatment of risk factors. In this chapter, we will discuss the roles of VSMC-derived CyPA in promoting vascular diseases, with particular emphasis on the role of CyPA as a novel biomarker for CAD. Additionally, we will mention the beneficial effects of fasudil, a selective Rho-kinase inhibitor, for the treatment of cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AngII:

Angiotensin II

CAD:

Coronary Artery Disease

Cdc42:

Cell Division Control Protein 42

cGMP:

Cyclic Guanosine Monophosphate

CyPA:

Cyclophilin A

CyPB:

Cyclophilin B

CyPC:

Cyclophilin C

CyPD:

Cyclophilin D

EC:

Endothelial Cells

EDHF:

Endothelium-Derived Hyperpolarizing Factors

eNOS:

Endothelial NO Synthase

ERK:

Extracellular Signal-Regulated Kinase

H2O2 :

Hydrogen Peroxide

JAK:

Janus Protein Tyrosine Kinase

NADPH:

Nicotinamide Adenine Dinucleotide Phosphate

NO:

Nitric Oxide

Nox:

NADPH Oxidases

O2 − :

Superoxide Anions

•OH:

Hydroxyl Radical

ONOO− :

Peroxynitrite

PAH:

Pulmonary Arterial Hypertension

PH:

Pulmonary Hypertension

PPIase:

Peptidyl-Prolyl isomerase

ROCK:

Rho/Rho-Kinase

ROS:

Reactive Oxygen Species

SMA:

Smooth Muscle Actin

SOD:

Superoxide Dismutase

SOXF:

Secreted Oxidative Stress-Induced Factors

TNFα:

Tumor Necrosis Factor-α

VCAM-1:

Vascular Cell Adhesion Molecule-1

VSMC:

Vascular Smooth Muscle Cells

References

  • Abe K, Shimokawa H, Morikawa K, et al. Long-term treatment with a Rho-kinase inhibitor improves monocrotaline-induced fatal pulmonary hypertension in rats. Circ Res. 2004;94:385–93.

    Article  CAS  PubMed  Google Scholar 

  • Abe K, Tawara S, Oi K, et al. Long-term inhibition of Rho-kinase ameliorates hypoxia-induced pulmonary hypertension in mice. J Cardiovasc Pharmacol. 2006;48:280–5.

    Article  CAS  PubMed  Google Scholar 

  • Amano M, Chihara K, Kimura K, et al. Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science. 1997;275:1308–11.

    Article  CAS  PubMed  Google Scholar 

  • Arora K, Gwinn WM, Bower MA, et al. Extracellular cyclophilins contribute to the regulation of inflammatory responses. J Immunol. 2005;175:517–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baas AS, Berk BC. Differential activation of mitogen-activated protein kinases by H2O2 and O2 − in vascular smooth muscle cells. Circ Res. 1995;77:29–36.

    Article  CAS  PubMed  Google Scholar 

  • Baines CP, Kaiser RA, Purcell NH, et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature. 2005;434:658–62.

    Article  CAS  PubMed  Google Scholar 

  • Bell RD, Winkler EA, Singh I, et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature. 2012;485:512–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergsma DJ, Eder C, Gross M, et al. The cyclophilin multigene family of peptidyl-prolyl isomerases. Characterization of three separate human isoforms. J Biol Chem. 1991;266:23204–14.

    CAS  PubMed  Google Scholar 

  • Berk BC. Vascular smooth muscle growth: autocrine growth mechanisms. Physiol Rev. 2001;81:999–1030.

    CAS  PubMed  Google Scholar 

  • Berk BC. Atheroprotective signaling mechanisms activated by steady laminar flow in endothelial cells. Circulation. 2008;117:1082–9.

    Article  PubMed  Google Scholar 

  • Berk BC, Alexander RW, Brock TA, et al. Vasoconstriction: a new activity for platelet-derived growth factor. Science. 1986;232:87–90.

    Article  CAS  PubMed  Google Scholar 

  • Bruemmer D, Collins AR, Noh G, et al. Angiotensin II-accelerated atherosclerosis and aneurysm formation is attenuated in osteopontin-deficient mice. J Clin Invest. 2003;112:1318–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgoyne JR, Oka S, Ale-Agha N, et al. Hydrogen peroxide sensing and signaling by protein kinases in the cardiovascular system. Antioxid Redox Signal. 2013;18:1042–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassis LA, Rateri DL, Lu H, et al. Bone marrow transplantation reveals that recipient AT1a receptors are required to initiate angiotensin II-induced atherosclerosis and aneurysms. Arterioscler Thromb Vasc Biol. 2007;27:380–6.

    Article  CAS  PubMed  Google Scholar 

  • Clempus RE, Griendling KK. Reactive oxygen species signaling in vascular smooth muscle cells. Cardiovasc Res. 2006;71:216–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen RA, Adachi T. Nitric-oxide-induced vasodilatation: regulation by physiologic s-glutathiolation and pathologic oxidation of the sarcoplasmic endoplasmic reticulum calcium ATPase. Trends Cardiovasc Med. 2006;16:109–14.

    Article  CAS  PubMed  Google Scholar 

  • Damsker JM, Bukrinsky MI, Constant SL. Preferential chemotaxis of activated human CD4+ T cells by extracellular cyclophilin A. J Leukoc Biol. 2007;82:613–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doe Z, Fukumoto Y, Takaki A, et al. Evidence for Rho-kinase activation in patients with pulmonary arterial hypertension. Circ J. 2009;73:1731–9.

    Article  Google Scholar 

  • Du H, Guo L, Fang F, et al. Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer’s disease. Nat Med. 2008;14:1097–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elrod JW, Wong R, Mishra S, et al. Cyclophilin D controls mitochondrial pore-dependent Ca2+ exchange, metabolic flexibility, and propensity for heart failure in mice. J Clin Invest. 2010;120:3680–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eto Y, Shimokawa H, Hiroki J, et al. Gene transfer of dominant negative Rho-kinase suppresses neointimal formation after balloon injury in pigs. Am J Physiol Heart Circ Physiol. 2000;278:H1744–50.

    CAS  PubMed  Google Scholar 

  • Fukui S, Fukumoto Y, Suzuki J, et al. Long-term inhibition of Rho-kinase ameliorates diastolic heart failure in hypertensive rats. J Cardiovasc Pharmacol. 2008;51:317–26.

    Article  CAS  PubMed  Google Scholar 

  • Fukumoto Y, Matoba T, Ito A, et al. Acute vasodilator effects of a Rho-kinase inhibitor, fasudil, in patients with severe pulmonary hypertension. Heart. 2005;91:391–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukumoto Y, Yamada N, Matsubara H, et al. Double-blind, placebo-controlled clinical trial with a Rho-kinase inhibitor in pulmonary arterial hypertension. Circ J. 2013;77:2619–25.

    Article  CAS  PubMed  Google Scholar 

  • Funakoshi Y, Ichiki T, Shimokawa H, et al. Rho-kinase mediates angiotensin II-induced monocyte chemoattractant protein-1 expression in rat vascular smooth muscle cells. Hypertension. 2001;38:100–4.

    Article  CAS  PubMed  Google Scholar 

  • Galat A, Metcalfe SM. Peptidylproline cis/trans isomerases. Prog Biophys Mol Biol. 1995;63:67–118.

    Article  CAS  PubMed  Google Scholar 

  • Gavazzi G, Deffert C, Trocme C, et al. NOX1 deficiency protects from aortic dissection in response to angiotensin II. Hypertension. 2007;50:189–96.

    Article  CAS  PubMed  Google Scholar 

  • Gensini GG. A more meaningful scoring system for determining the severity of coronary heart disease. Am J Cardiol. 1983;51:606.

    Article  CAS  PubMed  Google Scholar 

  • Griendling KK, FitzGerald GA. Oxidative stress and cardiovascular injury: Part II: animal and human studies. Circulation. 2003;108:2034–40.

    Article  PubMed  Google Scholar 

  • Griendling KK, Ushio-Fukai M. Redox control of vascular smooth muscle proliferation. J Lab Clin Med. 1998;132:9–15.

    Article  CAS  PubMed  Google Scholar 

  • Griendling KK, Berk BC, Ganz P, et al. Angiotensin II stimulation of vascular smooth muscle phosphoinositide metabolism. State of the art lecture. Hypertension. 1987;9:III181–5.

    Article  CAS  PubMed  Google Scholar 

  • Griendling KK, Minieri CA, Ollerenshaw JD, et al. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res. 1994;74:1141–8.

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Majmudar G, Jensen TC, et al. Characterization of the gene for human EMMPRIN, a tumor cell surface inducer of matrix metalloproteinases. Gene. 1998;220:99–108.

    Article  CAS  PubMed  Google Scholar 

  • Habashi JP, Judge DP, Holm TM, et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science. 2006;312:117–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handschumacher RE, Harding MW, Rice J, et al. Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science. 1984;226:544–7.

    Article  CAS  PubMed  Google Scholar 

  • Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685–95.

    Article  CAS  PubMed  Google Scholar 

  • Hattori T, Shimokawa H, Higashi M, et al. Long-term treatment with a specific Rho-kinase inhibitor suppresses cardiac allograft vasculopathy in mice. Circ Res. 2004a;94:46–52.

    Article  CAS  PubMed  Google Scholar 

  • Hattori T, Shimokawa H, Higashi M, et al. Long-term inhibition of Rho-kinase suppresses left ventricular remodeling after myocardial infarction in mice. Circulation. 2004b;109:2234–9.

    Article  CAS  PubMed  Google Scholar 

  • Haug C, Lenz C, Diaz F, et al. Oxidized low-density lipoproteins stimulate extracellular matrix metalloproteinase inducer (EMMPRIN) release by coronary smooth muscle cells. Arterioscler Thromb Vasc Biol. 2004;24:1823–9.

    Article  CAS  PubMed  Google Scholar 

  • Higashi M, Shimokawa H, Hattori T, et al. Long-term inhibition of Rho-kinase suppresses angiotensin II-induced cardiovascular hypertrophy in rats in vivo: effect on endothelial NAD(P)H oxidase system. Circ Res. 2003;93:767–75.

    Article  CAS  PubMed  Google Scholar 

  • Hiroki J, Shimokawa H, Higashi M, et al. Inflammatory stimuli upregulate Rho-kinase in human coronary vascular smooth muscle cells. J Mol Cell Cardiol. 2004;37:537–46.

    Article  CAS  PubMed  Google Scholar 

  • Jin ZG, Melaragno MG, Liao DF, et al. Cyclophilin A is a secreted growth factor induced by oxidative stress. Circ Res. 2000;87:789–96.

    Article  CAS  PubMed  Google Scholar 

  • Jin ZG, Lungu AO, Xie L, et al. Cyclophilin A is a proinflammatory cytokine that activates endothelial cells. Arterioscler Thromb Vasc Biol. 2004;24:1186–91.

    Article  CAS  PubMed  Google Scholar 

  • Kandabashi T, Shimokawa H, Mukai Y, et al. Involvement of Rho-kinase in agonists-induced contractions of arteriosclerotic human arteries. Arterioscler Thromb Vasc Biol. 2002;22:243–8.

    Article  CAS  PubMed  Google Scholar 

  • Kandabashi T, Shimokawa H, Miyata K, et al. Evidence for protein kinase C-mediated activation of Rho-kinase in a porcine model of coronary artery spasm. Arterioscler Thromb Vasc Biol. 2003;23:2209–14.

    Article  CAS  PubMed  Google Scholar 

  • Kesarwani P, Murali AK, Al-Khami AA, et al. Redox regulation of T-cell function: from molecular mechanisms to significance in human health and disease. Antioxid Redox Signal. 2013;18:1497–534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Kim WJ, Jeon ST, et al. Cyclophilin A may contribute to the inflammatory processes in rheumatoid arthritis through induction of matrix degrading enzymes and inflammatory cytokines from macrophages. Clin Immunol. 2005;116:217–24.

    Article  CAS  PubMed  Google Scholar 

  • Kimura K, Ito M, Amano M, et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science. 1996;273:245–8.

    Article  CAS  PubMed  Google Scholar 

  • Kishi H, Bao J, Kohama K. Inhibitory effects of ML-9, wortmannin, and Y-27632 on the chemotaxis of vascular smooth muscle cells in response to platelet-derived growth factor-BB. J Biochem. 2000;128:719–22.

    Article  CAS  PubMed  Google Scholar 

  • Krummrei U, Bang R, Schmidtchen R, et al. Cyclophilin-A is a zinc-dependent DNA binding protein in macrophages. FEBS Lett. 1995;371:47–51.

    Article  CAS  PubMed  Google Scholar 

  • Kunieda T, Minamino T, Nishi J, et al. Angiotensin II induces premature senescence of vascular smooth muscle cells and accelerates the development of atherosclerosis via a p21-dependent pathway. Circulation. 2006;114:953–60.

    Article  CAS  PubMed  Google Scholar 

  • Lassegue B, San MA, Griendling K. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res. 2012;110:1364–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao DF, Jin ZG, Baas AS, et al. Purification and identification of secreted oxidative stress-induced factors from vascular smooth muscle cells. J Biol Chem. 2000;275:189–96.

    Article  CAS  PubMed  Google Scholar 

  • Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868–74.

    Article  CAS  PubMed  Google Scholar 

  • Mackay DJ, Hall A. Rho GTPases. J Biol Chem. 1998;273:20685–8.

    Article  CAS  PubMed  Google Scholar 

  • Marks AR. Cellular functions of immunophilins. Physiol Rev. 1996;76:631–49.

    CAS  PubMed  Google Scholar 

  • Matoba T, Shimokawa H, Nakashima M, et al. Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. J Clin Invest. 2000;106:1521–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsubara J, Sugiyama S, Sugamura K, et al. A dipeptidyl peptidase-4 inhibitor, des-fluoro-sitagliptin, improves endothelial function and reduces atherosclerotic lesion formation in apolipoprotein E-deficient mice. J Am Coll Cardiol. 2012;59:265–76.

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto Y, Uwatoku T, Oi K, et al. Long-term inhibition of Rho-kinase suppresses neointimal formation after stent implantation in porcine coronary arteries: involvement of multiple mechanisms. Arterioscler Thromb Vasc Biol. 2004;24:181–6.

    Article  CAS  PubMed  Google Scholar 

  • Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol. 2007;292:C82–97.

    Article  CAS  PubMed  Google Scholar 

  • Miyata K, Shimokawa H, Kandabashi T, et al. Rho-kinase is involved in macrophage-mediated formation of coronary vascular lesions in pigs in vivo. Arterioscler Thromb Vasc Biol. 2000;20:2351–8.

    Article  CAS  PubMed  Google Scholar 

  • Morikawa K, Shimokawa H, Matoba T, et al. Pivotal role of Cu, Zn-superoxide dismutase in endothelium-dependent hyperpolarization. J Clin Invest. 2003;112:1871–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano M, Satoh K, Fukumoto Y, et al. Important role of erythropoietin receptor to promote VEGF expression and angiogenesis in peripheral ischemia in mice. Circ Res. 2007;100:662–9.

    Article  CAS  PubMed  Google Scholar 

  • Nakayama M, Osaki S, Shimokawa H. Validation of mortality risk stratification models for cardiovascular disease. Am J Cardiol. 2011;108:391–6.

    Article  PubMed  Google Scholar 

  • Neco P, Giner D, Viniegra S, et al. New roles of myosin II during vesicle transport and fusion in chromaffin cells. J Biol Chem. 2004;279:27450–7.

    Article  CAS  PubMed  Google Scholar 

  • Nigro P, Satoh K, O’Dell MR, et al. Cyclophilin A is an inflammatory mediator that promotes atherosclerosis in apolipoprotein E-deficient mice. J Exp Med. 2011;208:53–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishida M, Tanabe S, Maruyama Y, et al. G alpha 12/13- and reactive oxygen species-dependent activation of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase by angiotensin receptor stimulation in rat neonatal cardiomyocytes. J Biol Chem. 2005;280:18434–41.

    Article  CAS  PubMed  Google Scholar 

  • Oi K, Shimokawa H, Hiroki J, et al. Remnant lipoproteins from patients with sudden cardiac death enhance coronary vasospastic activity through upregulation of Rho-kinase. Arterioscler Thromb Vasc Biol. 2004;24:918–22.

    Article  CAS  PubMed  Google Scholar 

  • Pan H, Luo C, Li R, et al. Cyclophilin A is required for CXCR4-mediated nuclear export of heterogeneous nuclear ribonucleoprotein A2, activation and nuclear translocation of ERK1/2, and chemotactic cell migration. J Biol Chem. 2008;283:623–37.

    Article  CAS  PubMed  Google Scholar 

  • Price ER, Zydowsky LD, Jin MJ, et al. Human cyclophilin B: a second cyclophilin gene encodes a peptidyl-prolyl isomerase with a signal sequence. Proc Natl Acad Sci U S A. 1991;88:1903–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pushkarsky T, Zybarth G, Dubrovsky L, et al. CD147 facilitates HIV-1 infection by interacting with virus-associated cyclophilin A. Proc Natl Acad Sci U S A. 2001;98:6360–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabinovitch M. Molecular pathogenesis of pulmonary arterial hypertension. J Clin Invest. 2012;122:4306–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radeff JM, Nagy Z, Stern PH. Rho and Rho kinase are involved in parathyroid hormone-stimulated protein kinase C alpha translocation and IL-6 promoter activity in osteoblastic cells. J Bone Miner Res. 2004;19:1882–91.

    Article  CAS  PubMed  Google Scholar 

  • Rao GN, Berk BC. Active oxygen species stimulate vascular smooth muscle cell growth and proto-oncogene expression. Circ Res. 1992;70:593–9.

    Article  CAS  PubMed  Google Scholar 

  • Ridker PM. High-sensitivity C-reactive protein, inflammation, and cardiovascular risk: from concept to clinical practice to clinical benefit. Am Heart J. 2004;148:S19–26.

    Article  CAS  PubMed  Google Scholar 

  • Sadoshima J, Xu Y, Slayter HS, et al. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell. 1993;75:977–84.

    Article  CAS  PubMed  Google Scholar 

  • Satoh K, Kagaya Y, Nakano M, et al. Important role of endogenous erythropoietin system in recruitment of endothelial progenitor cells in hypoxia-induced pulmonary hypertension in mice. Circulation. 2006;113:1442–50.

    Article  CAS  PubMed  Google Scholar 

  • Satoh K, Matoba T, Suzuki J, et al. Cyclophilin A mediates vascular remodeling by promoting inflammation and vascular smooth muscle cell proliferation. Circulation. 2008;117:3088–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh K, Fukumoto Y, Nakano M, et al. Statin ameliorates hypoxia-induced pulmonary hypertension associated with down-regulated stromal cell-derived factor-1. Cardiovasc Res. 2009a;81:226–34.

    Article  CAS  PubMed  Google Scholar 

  • Satoh K, Nigro P, Matoba T, et al. Cyclophilin A enhances vascular oxidative stress and the development of angiotensin II-induced aortic aneurysms. Nat Med. 2009b;15:649–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh K, Fukumoto Y, Sugimura K, et al. Cyclophilin A mediates pulmonary vascular remodeling by Rho-kinase activation in patients with pulmonary hypertension. Circulation. 2010;122:A11001 (supple).

    Google Scholar 

  • Satoh K, Nigro P, Berk BC. Oxidative stress and vascular smooth muscle cell growth: a mechanistic linkage by cyclophilin A. Antioxid Redox Signal. 2010b;12:675–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh K, Shimokawa H, Berk BC. Cyclophilin A: promising new target in cardiovascular therapy. Circ J. 2010c;74:2249–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh K, Berk BC, Shimokawa H. Vascular-derived reactive oxygen species for homeostasis and diseases. Nitric Oxide. 2011a;25:211–5.

    Article  CAS  PubMed  Google Scholar 

  • Satoh K, Fukumoto Y, Nakano M, et al. Emergence of the erythropoietin/erythropoietin receptor system as a novel cardiovascular therapeutic target. J Cardiovasc Pharmacol. 2011b;58:570–4.

    Article  CAS  PubMed  Google Scholar 

  • Satoh K, Fukumoto Y, Shimokawa H. Rho-kinase: important new therapeutic target in cardiovascular diseases. Am J Physiol Heart Circ Physiol. 2011c;301:H287–96.

    Article  CAS  PubMed  Google Scholar 

  • Satoh K, Nigro P, Zeidan A, et al. Cyclophilin A promotes cardiac hypertrophy in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2011d;31:1116–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh K, Fukumoto Y, Sugimura K, et al. Plasma Cyclophilin A is a novel biomarker for coronary artery disease. Circ J. 2013;77:447–55.

    Article  CAS  PubMed  Google Scholar 

  • Sauzeau V, Le Jeune H, Cario-Toumaniantz C, et al. P2Y1, P2Y2, P2Y4, and P2Y6 receptors are coupled to Rho and Rho kinase activation in vascular myocytes. Am J Physiol Heart Circ Physiol. 2000;278:H1751–61.

    CAS  PubMed  Google Scholar 

  • Sauzeau V, Le Mellionnec E, Bertoglio J, et al. Human urotensin II-induced contraction and arterial smooth muscle cell proliferation are mediated by RhoA and Rho-kinase. Circ Res. 2001;88:1102–4.

    Article  CAS  PubMed  Google Scholar 

  • Sawada N, Itoh H, Ueyama K, et al. Inhibition of Rho-associated kinase results in suppression of neointimal formation of balloon-injured arteries. Circulation. 2000;101:2030–3.

    Article  CAS  PubMed  Google Scholar 

  • Schneider H, Charara N, Schmitz R, et al. Human cyclophilin C: primary structure, tissue distribution, and determination of binding specificity for cyclosporins. Biochemistry. 1994;33:8218–24.

    Article  CAS  PubMed  Google Scholar 

  • Seizer P, Schonberger T, Schott M, et al. EMMPRIN and its ligand cyclophilin A regulate MT1-MMP, MMP-9 and M-CSF during foam cell formation. Atherosclerosis. 2010;209:51–7.

    Article  CAS  PubMed  Google Scholar 

  • Shao D, Oka S, Brady CD, et al. Redox modification of cell signaling in the cardiovascular system. J Mol Cell Cardiol. 2012;52:550–8.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Fukumoto Y, Tanaka SI, et al. Crucial role of ROCK2 in vascular smooth muscle cells for hypoxia-induced pulmonary hypertension in mice. Arterioscler Thromb Vasc Biol. 2013;33:2780–2791.

    Article  CAS  PubMed  Google Scholar 

  • Shimokawa H. Primary endothelial dysfunction: atherosclerosis. J Mol Cell Cardiol. 1999;31:23–37.

    Article  CAS  PubMed  Google Scholar 

  • Shimokawa H. Cellular and molecular mechanisms of coronary artery spasm: lessons from animal models. Jpn Circ J. 2000;64:1–12.

    Article  CAS  PubMed  Google Scholar 

  • Shimokawa H. Rho-kinase as a novel therapeutic target in treatment of cardiovascular diseases. J Cardiovasc Pharmacol. 2002;39:319–27.

    Article  CAS  PubMed  Google Scholar 

  • Shimokawa H. Reactive oxygen species promote vascular smooth muscle cell proliferation. Circ Res. 2013;113:1040–2.

    Article  CAS  PubMed  Google Scholar 

  • Shimokawa H, Rashid M. Development of Rho-kinase inhibitors for cardiovascular medicine. Trends Pharmacol Sci. 2007;28:296–302.

    Article  CAS  PubMed  Google Scholar 

  • Shimokawa H, Takeshita A. Rho-kinase is an important therapeutic target in cardiovascular medicine. Arterioscler Thromb Vasc Biol. 2005;25:1767–75.

    Article  CAS  PubMed  Google Scholar 

  • Shimokawa H, Tomoike H, Nabeyama S, et al. Coronary artery spasm induced in atherosclerotic miniature swine. Science. 1983;221:560–2.

    Article  CAS  PubMed  Google Scholar 

  • Shimokawa H, Ito A, Fukumoto Y, et al. Chronic treatment with interleukin-1 beta induces coronary intimal lesions and vasospastic responses in pigs in vivo. The role of platelet-derived growth factor. J Clin Invest. 1996;97:769–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimokawa H, Morishige K, Miyata K, et al. Long-term inhibition of Rho-kinase induces a regression of arteriosclerotic coronary lesions in a porcine model in vivo. Cardiovasc Res. 2001;51:169–77.

    Article  CAS  PubMed  Google Scholar 

  • Soe NN, Sowden M, Baskaran P, et al. Cyclophilin A is required for angiotensin II-induced p47phox translocation to caveolae in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2013;33:2147–53.

    Article  CAS  PubMed  Google Scholar 

  • Steinmann B, Bruckner P, Superti-Furga A. Cyclosporin A slows collagen triple-helix formation in vivo: indirect evidence for a physiologic role of peptidyl-prolyl cis-trans-isomerase. J Biol Chem. 1991;266:1299–303.

    CAS  PubMed  Google Scholar 

  • Sumimoto H. Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J. 2008;275:3249–77.

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Hemler ME. Regulation of MMP-1 and MMP-2 production through CD147/extracellular matrix metalloproteinase inducer interactions. Cancer Res. 2001;61:2276–81.

    CAS  PubMed  Google Scholar 

  • Sun J, Sukhova GK, Yang M, et al. Mast cells modulate the pathogenesis of elastase-induced abdominal aortic aneurysms in mice. J Clin Invest. 2007;117:3359–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Ohneda O, Takahashi S, et al. Erythroid-specific expression of the erythropoietin receptor rescued its null mutant mice from lethality. Blood. 2002;100:2279–88.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki J, Jin ZG, Meoli DF, et al. Cyclophilin A is secreted by a vesicular pathway in vascular smooth muscle cells. Circ Res. 2006;98:811–7.

    Article  CAS  PubMed  Google Scholar 

  • Takaki A, Morikawa K, Murayama Y, et al. Roles of endothelial oxidases in endothelium-derived hyperpolarizing factor responses in mice. J Cardiovasc Pharmacol. 2008a;52:510–7.

    Article  CAS  PubMed  Google Scholar 

  • Takaki A, Morikawa K, Tsutsui M, et al. Crucial role of nitric oxide synthases system in endothelium-dependent hyperpolarization in mice. J Exp Med. 2008b;205:2053–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takemoto M, Liao JK. Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors. Arterioscler Thromb Vasc Biol. 2001;21:1712–9.

    Article  CAS  PubMed  Google Scholar 

  • Takemoto M, Sun J, Hiroki J, et al. Rho-kinase mediates hypoxia-induced downregulation of endothelial nitric oxide synthase. Circulation. 2002;106:57–62.

    Article  CAS  PubMed  Google Scholar 

  • Taniyama Y, Griendling KK. Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension. 2003;42:1075–81.

    Article  CAS  PubMed  Google Scholar 

  • Theuerkorn M, Fischer G, Schiene-Fischer C. Prolyl cis/trans isomerase signalling pathways in cancer. Curr Opin Pharmacol. 2011;11:281–7.

    Article  CAS  PubMed  Google Scholar 

  • Thomas M, Gavrila D, McCormick ML, et al. Deletion of p47phox attenuates angiotensin II-induced abdominal aortic aneurysm formation in apolipoprotein E-deficient mice. Circulation. 2006;114:404–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vahebi S, Kobayashi T, Warren CM, et al. Functional effects of Rho-kinase-dependent phosphorylation of specific sites on cardiac troponin. Circ Res. 2005;96:740–7.

    Article  CAS  PubMed  Google Scholar 

  • van Nieuw Amerongen GP, van Delft S, Vermeer MA, et al. Activation of RhoA by thrombin in endothelial hyperpermeability: role of Rho-kinase and protein tyrosine kinases. Circ Res. 2000;87:335–40.

    Article  PubMed  Google Scholar 

  • Vanhoutte PM. Endothelium-derived free radicals: for worse and for better. J Clin Invest. 2001;107:23–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YX, Martin-McNulty B, da Cunha V, et al. Fasudil, a Rho-kinase inhibitor, attenuates angiotensin II-induced abdominal aortic aneurysm in apolipoprotein E-deficient mice by inhibiting apoptosis and proteolysis. Circulation. 2005;111:2219–26.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Weigand L, Foxson J, et al. Ca2+ signaling in hypoxic pulmonary vasoconstriction: effects of myosin light chain and Rho-kinase antagonists. Am J Physiol Lung Cell Mol Physiol. 2007;293:L674–85.

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Okamoto Y, Inoki I, et al. Sphingosine-1-phosphate receptor-2 deficiency leads to inhibition of macrophage proinflammatory activities and atherosclerosis in apoE-deficient mice. J Clin Invest. 2010;120:3979–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weintraub NL. Understanding abdominal aortic aneurysm. N Engl J Med. 2009;361:1114–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C, Parrott AM, Fu C, et al. Thioredoxin 1-mediated post-translational modifications: reduction, transnitrosylation, denitrosylation, and related proteomics methodologies. Antioxid Redox Signal. 2011;15:2565–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamakawa T, Tanaka S, Numaguchi K, et al. Involvement of Rho-kinase in angiotensin II-induced hypertrophy of rat vascular smooth muscle cells. Hypertension. 2000;35:313–8.

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Lu N, Zhou J, et al. Cyclophilin A up-regulates MMP-9 expression and adhesion of monocytes/macrophages via CD147 signalling pathway in rheumatoid arthritis. Rheumatology (Oxford). 2008;47:1299–310.

    Article  CAS  Google Scholar 

  • Yoshimura K, Aoki H, Ikeda Y, et al. Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase. Nat Med. 2005;11:1330–8.

    Article  CAS  PubMed  Google Scholar 

  • Yurchenko V, Zybarth G, O’Connor M, et al. Active site residues of cyclophilin A are crucial for its signaling activity via CD147. J Biol Chem. 2002;277:22959–65.

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Wang X, Deinum J, et al. Cyclophilin A participates in the nuclear translocation of apoptosis-inducing factor in neurons after cerebral hypoxia-ischemia. J Exp Med. 2007;204:1741–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Shimokawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Satoh, K., Shimokawa, H. (2015). Cyclophilin A: Novel Biomarker for Oxidative Stress and Cardiovascular Diseases. In: Preedy, V., Patel, V. (eds) General Methods in Biomarker Research and their Applications. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7696-8_40

Download citation

Publish with us

Policies and ethics