Skip to main content

Creatine as Biomarker

  • Reference work entry
  • First Online:
General Methods in Biomarker Research and their Applications

Abstract

Creatine (Cr) is a nitrogenous organic compound which plays a relevant function in the cellular energy metabolism supplying high-energy phosphate groups to the cell through the creatine kinase–phosphocreatine system. Over time, additional information about extra functions of Cr has been reported, such as its role as antioxidant, antiapoptotic, neuroprotective, or neurotransmitter.

Half of the body requirements of Cr are supplied by diet, and the rest is synthesized endogenously by two enzymes, l-arginine:glycine amidinotransferase (AGAT) and S-adenosyl-l-methionine:N-guanidinoacetate methyltransferase (GAMT). Cr is internalized into the cells through a specific membrane Cr transporter. Three inherited metabolic disorders have been described, involving the biosynthetic pathway (GAMT and AGAT deficiencies) and the transporter of Cr (CRTR). These diseases are known as cerebral Cr deficiency syndromes. The measurement of Cr is used worldwide as the biomarker for the biochemical diagnosis of these diseases. Furthermore, numerous investigations have been carried out to analyze the relation between Cr and other metabolic pathways, such as the mitochondrial respiratory chain, the urea cycle, the methylation, or the transsulfuration pathways.

In addition to the role of Cr as biomarker in the biosynthesis and transport of Cr disorders, this chapter is focused on the role of Cr as biomarker of different pathologies including mitochondrial diseases, congenital urea cycle defects, kidney and liver diseases, cancer processes, thyroid defects, and autism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D-NMR:

Two-Dimensional Nuclear Magnetic Resonance Spectroscopy

31P MRS:

Magnetic Resonance spectroscopy

ADMA:

Asymmetric Dimethylarginine

AGAT:

l-arginine:Glycine Amidinotransferase

ALT:

Alanine Aminotransferase

ANT-1:

Adenine Nucleotide Translocator 1

ASDs:

Autism Spectrum Disorders

ASL:

Argininosuccinate Lyase

ASS:

Argininosuccinate Synthetase

AST:

Aspartate Aminotransferase

CCDS:

Congenital Disorders of Creatine Metabolism

cCKs:

Cytosolic CKs

CCS/C:

(Choline + Creatine + Spermine)/Citrate

CJMG:

Cataract Juvenile, Microcornea, and Glucosuria

CK:

Creatine Kinase

CNVs:

Copy Number Variations

Crn:

Creatinine

CRTR:

Creatine Transporter

EC:

Esophageal Carcinoma

GAA:

Guanidinoacetate

GAMT:

S-Adenosyl-l-Methionine:N-Guanidinoacetate Methyltransferase

GFR:

Glomerular Filtration Rate

GSA:

Guanidinosuccinic Acid

HHH:

Hyperammonemia–Hyperornithinemia–Homocitrullinuria

H-MRS:

Proton Magnetic Resonance Spectroscopy

HPLC–FLD:

Liquid Chromatography–Fluorescence Detection

HRMAS:

High-Resolution Magic-Angle Spinning

LC–MS:

Liquid Chromatography–Mass Spectrometry

LC–MS/MS:

Liquid Chromatography with Tandem Mass Spectrometry

LPI:

Lysinuric Protein Intolerance

MELAS:

Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-Like Episodes

MERRF:

Myoclonus Epilepsy and Ragged-Red Fibers

MPT:

Mitochondrial Permeability Transition Pore

MRS:

Magnetic Resonance Spectroscopy

MRSI:

Magnetic Resonance Spectroscopic Imaging

mtCKs:

Mitochondrial CKs

OAT:

Ornithine Delta-Aminotransferase

OTC:

Ornithine Transcarbamylase

PCr:

Phosphocreatine

RCD:

Respiratory Chain Deficiency

ROS:

Reactive Oxygen Species

SAH:

S-Adenosylhomocysteine

SAM:

S-Adenosylmethionine

UCDs:

Urea Cycle Defects

References

  • Abplanalp J, Laczko E, Philp NJ, et al. The cataract and glucosuria associated monocarboxylate transporter MCT12 is a new creatine transporter. Hum Mol Genet. 2013;22(16):3218–26. doi:10.1093/hmg/ddt175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida LS, Verhoeven NM, Roos B, et al. Creatine and guanidinoacetate: diagnostic markers for inborn errors in creatine biosynthesis and transport. Mol Genet Metab. 2004;82(3):214–9. doi:10.1016/j.ymgme.2004.05.001.

    Article  CAS  PubMed  Google Scholar 

  • Almeida LS, Rosenberg EH, Verhoeven NM, Jakobs C, Salomons GS. Are cerebral creatine deficiency syndromes on the radar screen? Future Neurol. 2006;5(1):637–49. doi:10.2217/14796708.1.5.637.

    Article  Google Scholar 

  • Alves CR, Santiago BM, Lima FR, et al. Creatine supplementation in fibromyalgia: a double-blind, randomized, placebo-controlled trial. Arthritis Care Res. 2013;65(9):1449–59. doi:10.1002/acr.22020.

    Article  CAS  Google Scholar 

  • Andrade F, Rodríguez-Soriano J, Prieto JA, et al. The arginine-creatine pathway is disturbed in children and adolescents with renal transplants. Pediatr Res. 2008;64(2):218–22. doi:10.1203/PDR.0b013e318176180e.

    Article  CAS  PubMed  Google Scholar 

  • Andrade F, Rodríguez-Soriano J, Prieto JA, et al. Methylation cycle, arginine-creatine pathway and asymmetric dimethylarginine in paediatric renal transplant. Nephrol Dial Transplant. 2011;26(1):328–36. doi:10.1093/ndt/gfq404.

    Article  CAS  PubMed  Google Scholar 

  • Arias A, Garcia-Villoria J, Ribes A. Guanidinoacetate and creatine/creatinine levels in controls and patients with urea cycle defects. Mol Genet Metab. 2004;82(3):220–3. doi:10.1016/j.ymgme.2004.04.009.

    Article  CAS  PubMed  Google Scholar 

  • Arias A, Ormazabal A, Moreno J, et al. Methods for the diagnosis of creatine deficiency syndromes: a comparative study. J Neurosci Methods. 2006;156(1–2):305–9. doi:10.1016/j.jneumeth.2006.03.005.

    Article  CAS  PubMed  Google Scholar 

  • Arias A, Corbella M, Fons C, et al. Creatine transporter deficiency: prevalence among patients with mental retardation and pitfalls in metabolite screening. Clin Biochem. 2007;40(16–17):1328–31. doi:10.1016/j.clinbiochem.2007.07.010.

    Article  CAS  PubMed  Google Scholar 

  • Arias-Dimas A, Vilaseca MA, Artuch R, Ribes A, Campistol J. Diagnosis and treatment of brain creatine deficiency syndromes. Rev Neurol. 2006;43:302–8.

    CAS  PubMed  Google Scholar 

  • Balsom PD, Söderlund K, Ekblom B. Creatine in humans with special reference to creatine supplementation. Sports Med. 1994;18:268–80.

    Article  CAS  PubMed  Google Scholar 

  • Baruth JM, Wall CA, Patterson MC, Port JD. Proton magnetic resonance spectroscopy as a probe into the pathophysiology of Autism Spectrum Disorders (ASD): a review. Autism Res. 2013;6(2):119–33. doi:10.1002/aur.1273.

    Article  PubMed  Google Scholar 

  • Bayou N, M’rad R, Belhaj A, et al. The creatine transporter gene paralogous at 16p11.2 is expressed in human brain. Comp Funct Genomics. 2008:609684. doi: 10.1155/2008/609684.

    Google Scholar 

  • Beal MF. Neuroprotective effects of creatine. Amino Acids. 2011;40(5):1305–13. doi:10.1007/s00726-011-0851-0.

    Article  CAS  PubMed  Google Scholar 

  • Béard E, Braissant O. Synthesis and transport of creatine in the CNS: importance for cerebral functions. J Neurochem. 2010;115(2):297–313. doi:10.1111/j.1471-4159.2010.06935.x.

    Article  PubMed  Google Scholar 

  • Bianchi MC, Tosetti M, Fornai F, Alessandri’ MG, Cipriani P, De Vito G, Canapicchi R. Reversible brain creatine deficiency in two sisters with normal blood creatine level. Ann Neurol. 2000;47:511–3.

    Article  CAS  PubMed  Google Scholar 

  • Bodamer OA, Bloesch SM, Gregg AR, Stockler-Ipsiroglu S, O’Brien WE. Analysis of guanidinoacetate and creatine by isotope dilution electrospray tandem mass spectrometry. Clin Chim Acta. 2001;308(1–2):173–8. doi:10.1016/S0009-8981(01)00480-6.

    Article  CAS  PubMed  Google Scholar 

  • Boenzi S, Martinelli D, Carrozzo R, et al. Plasma creatine is elevated in mitochondrial disorders: a new biomarker for the diagnosis. J Inherit Metab Dis. 2011a;34:S49–286.

    Google Scholar 

  • Boenzi S, Rizzo C, Di Ciommo VM, et al. Simultaneous determination of creatine and guanidinoacetate in plasma by liquid chromatography-tandem mass spectrometry (LC-MS/MS). J Pharm Biomed Anal. 2011b;56(4):792–8. doi:10.1016/j.jpba.2011.06.006.

    Article  CAS  PubMed  Google Scholar 

  • Boenzi S, Pastore A, Martinelli D, et al. Creatine metabolism in urea cycle defects. J Inherit Metab Dis. 2012;35(4):647–53. doi:10.1007/s10545-012-9494-x.

    Article  CAS  PubMed  Google Scholar 

  • Campistol J, Arias-Dimas A, Poo P, et al. Cerebral creatine transporter deficiency: an infradiagnosed neurometabolic disease. Rev Neurol. 2007;44:343–7.

    CAS  PubMed  Google Scholar 

  • Choi CG, Yoo HW. Localized proton MR spectroscopy in infants with urea cycle defect. AJNR Am J Neuroradiol. 2001;22:834–7.

    CAS  PubMed  Google Scholar 

  • Choi JS, Baek HM, Kim S, et al. HR-MAS MR spectroscopy of breast cancer tissue obtained with core needle biopsy: correlation with prognostic factors. PLoS One. 2012;7(12):e51712. doi:10.1371/journal.pone.0051712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clayton TA, Lindon JC, Everett JR, et al. Hepatotoxin-induced hypercreatinaemia and hypercreatinuria: their relationship to one another, to liver damage and to weakened nutritional status. Arch Toxicol. 2004;78(2):86–96. doi:10.1007/s00204-003-0515-2.

    Article  CAS  PubMed  Google Scholar 

  • Cognat S, Cheillan D, Piraud M, Roos B, Jakobs C, Vianey-Saban C. Determination of guanidinoacetate and creatine in urine and plasma by liquid chromatography-tandem mass spectrometry. Clin Chem. 2004;50(8):1459–61. doi:10.1373/clinchem.2004.034538.

    Article  CAS  PubMed  Google Scholar 

  • Cohen BD. Guanidinosuccinic acid in uremia. Arch Intern Med. 1970;126:847–50.

    Article  CAS  PubMed  Google Scholar 

  • Corrigan NM, Shaw DW, Estes AM, et al. Atypical developmental patterns of brain chemistry in children with autism spectrum disorder. JAMA Psychiatry. 2013;70(9):964–74. doi:10.1001/jamapsychiatry.2013.1388.

    Article  PubMed  Google Scholar 

  • Dionisi Vici C, Bachmann C, Gambarara M, Colombo JP, Sabetta G. Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome: low creatine excretion and effect of citrulline, arginine, or ornithine supplement. Pediatr Res. 1987;22:364–7.

    Article  CAS  PubMed  Google Scholar 

  • Fedele TA, Galdos-Riveros AC, Jose de Fariase Melo H, Magalhães A, Maria DA. Prognostic relationship of metabolic profile obtained of melanoma B16F10. Biomed Pharmacother. 2013;67(2):146–56. doi:10.1016/j.biopha.2012.10.013.

    Article  CAS  PubMed  Google Scholar 

  • Gropman AL, Fricke ST, Seltzer RR, et al. MRS identifies symptomatic and asymptomatic subjects with partial ornithine transcarbamylase deficiency. Mol Genet Metab. 2008;95(1–2):21–30. doi:10.1016/j.ymgme.2008.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas D, Gan-Schreier H, Langhans CD, et al. Diagnosis and therapeutic monitoring of inborn errors of creatine metabolism and transport using liquid chromatography-tandem mass spectrometry in urine, plasma and CSF. Gene. 2014;538(1):188–94. doi:10.1016/j.gene.2014.01.019.

    Article  CAS  PubMed  Google Scholar 

  • Halestrap AP, Meredith D. The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch. 2004;447(5):619–28. doi:10.1007/s00424-003-1067-2.

    Article  CAS  PubMed  Google Scholar 

  • Harvey S, Harvey L, Kraus J. Disorders of transsulfuration. In: Scriver C, Beaudet A, Sly W, Valle D, editors. The metabolic & molecular bases of inherited disease. New York: McGraw-Hill; 2001. p. 2007–56.

    Google Scholar 

  • Hasim A, Ali M, Mamtimin B, Ma JQ, Li QZ, Abudula A. Metabonomic signature analysis of cervical carcinoma and precancerous lesions in women by 1H NMR spectroscopy. Exp Ther Med. 2012;3(6):945–51. doi:10.3892/etm.2012.509.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heinänen K, Näntö-Salonen K, Komu M, et al. Creatine corrects muscle 31P spectrum in gyrate atrophy with hyperornithinaemia. Eur J Clin Invest. 1999a;29:1060–5.

    Article  PubMed  Google Scholar 

  • Heinänen K, Näntö-Salonen K, Komu M, et al. Muscle creatine phosphate in gyrate atrophy of the choroid and retina with hyperornithinaemia–clues to pathogenesis. Eur J Clin Invest. 1999b;29:426–31.

    Article  PubMed  Google Scholar 

  • Höglund PJ, Adzic D, Scicluna SJ, Lindblom J, Fredriksson R. The repertoire of solute carriers of family 6: identification of new human and rodent genes. Biochem Biophys Res Commun. 2005;336(1):175–89. doi:10.1016/j.bbrc.2005.08.048.

    Article  PubMed  Google Scholar 

  • Institute of Medical Genetics in Cardiff. The human gene mutation database. http://www.hgmd.org. Accessed June 2014.

  • Item CB, Stöckler-Ipsiroglu S, Stromberger C, et al. Arginine:glycine amidinotransferase deficiency: the third inborn error of creatine metabolism in humans. Am J Hum Genet. 2001;69(5):1127–33. doi:10.1086/323765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joncquel-Chevalier Curt M, Cheillan D, Briand G, et al. Creatine and guanidinoacetate reference values in a French population. Mol Genet Metab. 2013;110(3):263–7. doi:10.1016/j.ymgme.2013.09.005.

    Article  CAS  PubMed  Google Scholar 

  • Kley RA, Tarnopolsky MA, Vorgerd M. Creatine for treating muscle disorders. Cochrane Database Syst Rev. 2013;6, CD004760. doi:10.1002/14651858.CD004760.pub4.

    Google Scholar 

  • Kloeckener-Gruissem B, Vandekerckhove K, Nürnberg G, Neidhardt J, Zeitz C, Nürnberg P, Schipper I, Berger W. Mutation of solute carrier SLC16A12 associates with a syndrome combining juvenile cataract with microcornea and renal glucosuria. Am J Hum Genet. 2008;82(3):772–9. doi:10.1016/j.ajhg.2007.12.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhlback B. Creatine and creatinine metabolism in thyrotoxicosis and hypothyroidism; a clinical study. Acta Med Scand Suppl. 1957;331:1–70.

    CAS  PubMed  Google Scholar 

  • Leuzzi V, Mastrangelo M, Battini R, Cioni G. Inborn errors of creatine metabolism and epilepsy. Epilepsia. 2013;54(2):217–27. doi:10.1111/epi.12020.

    Article  CAS  PubMed  Google Scholar 

  • Marescau B, Qureshi IA, De Deyn P, Letarte J, Ryba R, Lowenthal A. Guanidino compounds in plasma, urine and cerebrospinal fluid of hyperargininemic patients during therapy. Clin Chim Acta. 1985;146:21–7.

    Article  CAS  PubMed  Google Scholar 

  • Marescau B, De Deyn PP, Holvoet J, et al. Guanidino compounds in serum and urine of cirrhotic patients. Metabolism. 1995;44(5):584–8. doi:10.1016/0026-0495(95)90114-0.

    Article  CAS  PubMed  Google Scholar 

  • Marescau B, Nagels G, Possemiers I, et al. Guanidino compounds in serum and urine of nondialyzed patients with chronic renal insufficiency. Metabolism. 1997;46(9):1024–31. doi:10.1016/S0026-0495(97)90273-0.

    Article  CAS  PubMed  Google Scholar 

  • Mavel S, Nadal-Desbarats L, Blasco H, et al. 1H-13C NMR-based urine metabolic profiling in autism spectrum disorders. Talanta. 2013;114:95–102. doi:10.1016/j.talanta.2013.03.064.

    Article  CAS  PubMed  Google Scholar 

  • Mercimek-Mahmutoglu S, Stöckler-Ipsiroglu S, Salomons GS. Creatine deficiency syndromes. In: Pagon RA, Adam MP, Bird TD, Dolan CR, Fong CT, Stephens K, editors. GeneReviews™ [Internet]. Seattle: University of Washington; 1993–2013. Published 15 Jan 2009. Updated 18 Aug 2011. Accessed May 2014.

    Google Scholar 

  • Nänto-Salonen K, Komu M, Lundbom N, et al. Reduced brain creatine in gyrate atrophy of the choroid and retina with hyperornithinemia. Neurology. 1999;53:303–7.

    Article  PubMed  Google Scholar 

  • Natelson S, Sherwin JE. Proposed mechanism for urea nitrogen re-utilization: relationship between urea and proposed guanidine cycles. Clin Chem. 1979;25:1343–4.

    CAS  PubMed  Google Scholar 

  • Ndika JD, Lusink V, Beaubrun C, et al. Cloning and characterization of the promoter regions from the parent and paralogous creatine transporter genes. Gene. 2014;533(2):488–93. doi:10.1016/j.gene.2013.10.008.

    Article  CAS  PubMed  Google Scholar 

  • Pajares S, Arias A, García-Villoria J, Briones P, Ribes A. Role of creatine as biomarker of mitochondrial diseases. Mol Genet Metab. 2013;108(2):119–24. doi:10.1016/j.ymgme.2012.11.283.

    Article  CAS  PubMed  Google Scholar 

  • Peral MJ, Vázquez-Carretero MD, Ilundain AA. Na+/Cl/creatine transporter activity and expression in rat brain synaptosomes. Neuroscience. 2010;165(1):53–60. doi:10.1016/j.neuroscience.2009.10.001.

    Article  CAS  PubMed  Google Scholar 

  • Perna AF, Ingrosso D, Galletti P, Zappia V, De Santo NG. Membrane protein damage and methylation reactions in chronic renal failure. Kidney Int. 1996;50:358–66.

    Article  CAS  PubMed  Google Scholar 

  • Roze E, Azuar C, Menuel C, Häberle J, Guillevin R. Usefulness of magnetic resonance spectroscopy in urea cycle disorders. Pediatr Neurol. 2007;37:222–5.

    Article  PubMed  Google Scholar 

  • Salomons GS, van Dooren SJ, Verhoeven NM, et al. X-linked creatine-transporter gene (SLC6A8) defect: a new creatine-deficiency syndrome. Am J Hum Genet. 2001;68(6):1497–500. doi:10.1086/320595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnackenberg LK, Chen M, Sun J, et al. Evaluations of the trans-sulfuration pathway in multiple liver toxicity studies. Toxicol Appl Pharmacol. 2009;235(1):25–32. doi:10.1016/j.taap.2008.11.015.

    Article  CAS  PubMed  Google Scholar 

  • Selnaes KM, Gribbestad IS, Bertilsson H, et al. Spatially matched in vivo and ex vivo MR metabolic profiles of prostate cancer – investigation of a correlation with Gleason score. NMR Biomed. 2013;26(5):600–6. doi:10.1002/nbm.2901.

    Article  CAS  PubMed  Google Scholar 

  • Shaham O, Slate NG, Goldberger O, et al. A plasma signature of human mitochondrial disease revealed through metabolic profiling of spent media from cultured muscle cells. Proc Natl Acad Sci U S A. 2010;107(4):1571–5. doi:10.1073/pnas.0906039107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sipilä I, Simell O, Arjomaa P. Gyrate atrophy of the choroid and retina with hyperornithinemia. Deficient formation of guanidinoacetic acid from arginine. J Clin Invest. 1980;66:684–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stöckler S, Isbrandt D, Hanefeld F, Schmidt B, von Figura K. Guanidinoacetate methyltransferase deficiency: the first inborn error of creatine metabolism in man. Am J Hum Genet. 1996;58:914–22.

    PubMed  PubMed Central  Google Scholar 

  • Szatmari P, Paterson AD, Zwaigenbaum L, et al. Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet. 2007;39(3):319–28. doi:10.1038/ng1985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takanashi J, Kurihara A, Tomita M, et al. Distinctly abnormal brain metabolism in late-onset ornithine transcarbamylase deficiency. Neurology. 2002;59:210–4.

    Article  CAS  PubMed  Google Scholar 

  • Torremans A, Marescau B, Kränzlin B, et al. Biochemical validation of a rat model for polycystic kidney disease: comparison of guanidino compound profile with the human condition. Kidney Int. 2006;69(11):2003–12. doi:10.1038/sj.ki.5000443.

    Article  CAS  PubMed  Google Scholar 

  • U.S. National Institutes of Health. ClinicalTrials.gov. http://www.clinicaltrials.gov/ct2/results?term=creatine&Search=Search. Accessed June 2014.

  • Valayannopoulos V, Boddaert N, Mention K, et al. Secondary creatine deficiency in ornithine delta-aminotransferase deficiency. Mol Genet Metab. 2009;97(2):109–13. doi:10.1016/j.ymgme.2008.12.010.

    Article  CAS  PubMed  Google Scholar 

  • Valongo C, Cardoso ML, Domingues P, et al. Age related reference values for urine creatine and guanidinoacetic acid concentration in children and adolescents by gas chromatography–mass spectrometry. Clin Chim Acta. 2004;348(1–2):155–61. doi:10.1016/j.cccn.2004.05.013.

    Article  CAS  PubMed  Google Scholar 

  • van de Kamp JM, Jakobs C, Gibson KM, Salomons GS. New insights into creatine transporter deficiency: the importance of recycling creatine in the brain. J Inherit Metab Dis. 2013a;36(1):155–6. doi:10.1007/s10545-012-9537-3.

    Article  PubMed  Google Scholar 

  • van de Kamp JM, Betsalel OT, Mercimek-Mahmutoglu S, et al. Phenotype and genotype in 101 males with X-linked creatine transporter deficiency. J Med Genet. 2013b;50(7):463–72. doi:10.1136/jmedgenet-2013-101658.

    Article  PubMed  Google Scholar 

  • van de Kamp JM, Mancini GM, Salomons GS. X-linked creatine transporter deficiency: clinical aspects and pathophysiology. J Inherit Metab Dis. 2014. doi:10.1007/s10545-014-9713-8.

    PubMed  Google Scholar 

  • van Spronsen FJ, Reijngoud DJ, Verhoeven NM, Soorani-Lunsing RJ, Jakobs C, Sijens PE. High cerebral guanidinoacetate and variable creatine concentrations in argininosuccinate synthetase and lyase deficiency: implications for treatment? Mol Genet Metab. 2006;89(3):274–6. doi:10.1016/j.ymgme.2006.02.005.

    Article  PubMed  Google Scholar 

  • Vandekerckhove K, Lange AP, Herzog D, Schipper I. Juvenile cataract associated with microcornea and glucosuria: a new syndrome. Klin Monbl Augenheilkd. 2007;224(4):344–6. doi:10.1055/s-2007-962943.

    Article  CAS  PubMed  Google Scholar 

  • Verhelst J, Berwaerts J, Marescau B, et al. Serum creatine, creatinine, and other guanidino compounds in patients with thyroid dysfunction. Metabolism. 1997;46(9):1063–7. doi:10.1016/S0026-0495(97)90279-1.

    Article  CAS  PubMed  Google Scholar 

  • Verhoeven NM, Salomons GS, Jakobs C. Laboratory diagnosis of defects of creatine biosynthesis and transport. Clin Chim Acta. 2005;361(1–2):1–9. doi:10.1016/j.cccn.2005.04.022.

    Article  CAS  PubMed  Google Scholar 

  • Von Figura K, Hanefeld F, Isbrandt D, Stöckler-Ipsiroglu S. Guanidinoacetate methyltransferase deficiency. In: Scriver C, Beaudet A, Sly W, Valle D, editors. The metabolic & molecular bases of inherited disease. New York: McGraw-Hill; 2001. p. 1897–908.

    Google Scholar 

  • Wallimann T, Tokarska-Schlattner M, Schlattner U. The creatine kinase system and pleiotropic effects of creatine. Amino Acids. 2011;40(5):1271–96. doi:10.1007/s00726-011-0877-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Wang L, Wang S, et al. Study of metabonomic profiles of human esophageal carcinoma by use of high-resolution magic-angle spinning 1H NMR spectroscopy and multivariate data analysis. Anal Bioanal Chem. 2013;405(10):3381–9. doi:10.1007/s00216-013-6774-8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonia Ribes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Ribes, A., Pajares, S., Arias, Á., García-Villoria, J. (2015). Creatine as Biomarker. In: Preedy, V., Patel, V. (eds) General Methods in Biomarker Research and their Applications. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7696-8_39

Download citation

Publish with us

Policies and ethics