Skip to main content

Isoprostanes as Biomarkers of Disease and Early Biological Effect

  • Reference work entry
  • First Online:
General Methods in Biomarker Research and their Applications

Abstract

Nowadays, the relationship between environment and public health must be studied through molecular epidemiology techniques which needs of increasingly sensitive instruments able to detect the smaller exposure and the smaller biological effects. These instruments are the biomarkers, and each type of them indicates, for preventive purposes, a particular stage of the biochemical pathway that, from exposure, can lead to disease through absorption, metabolic activation, and possible covalent bonds with DNA and proteins. Oxidative stress is a typical condition that falls under the description of semispecific biomarkers of effect, highlighting, at the meantime, a prepathological condition. This last is due to a biological damage occurring when oxidants exceed the level of antioxidant defenses producing a physiological unbalance which is indicative of a risky condition. The resulting damage to cells and organs may activate and/or accelerate disease processes.

Isoprostanes (IsoPs) are a group of prostaglandin-like compounds resulting from the peroxidation process of arachidonic acid induced by reactive oxygen species (ROS). These can contribute to the impairment of the chemical and physical properties of cell membranes that give rise to the oxidative damage. Isoprostanes can be grouped into four subfamilies, depending on where the radical link took place in the chain. Among all the isoprostanes, the F2-isoprostanes are the more stable molecules, detectable in all human tissues and biological fluids, including plasma, urine, bronchoalveolar lavage fluid, cerebrospinal fluid, and bile. The presence of isoprostanes in biological fluids and in human tissues is crucial because it describes a lipid peroxidation not completely contrasted by the antioxidant defenses. Due to their stability, the isoprostanes quantification, for example, in urine, can be adopted as a useful and sensitive marker of systemic oxidative stress resulting from an inflammatory response. The F2-isoprostanes allow to evaluate the oxidative lesions in a number of human diseases including atherosclerosis, Alzheimer, and lung disease. Oxidative stress increases in asthmatics and in subjects suffering from chronic obstructive pulmonary disease (COPD). Also for these reasons, isoprostanes have been proposed as a biomarker for inflammation of the airways and for the diagnosis of asthma. The 15-F2t-isoprostane is used also in epidemiological studies aiming to prove a relationship between the risk of developing chronic diseases and the action of free radicals arising from tobacco smoking and of occupational and environmental exposure to inhaled formaldehyde.

The quantification of isoprostanes has opened up new areas of investigation regarding the role of free radicals in human physiology and pathology and in the strategies of primary prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

15-F2t-IsoP:

15-F2t-isoprostanes

FA:

Formaldehyde

IsoP:

Isoprostanes

LPO:

Lipid Peroxidation

ROS:

Reactive Oxygen Species

References

  • Aggarwal S, Moodley YP, Thompson PJ, Misso NL. Prostaglandin E2 and cysteinyl leukotriene concentrations in sputum: association with asthma severity and eosinophilic inflammation. Clin Exp Allergy J Br Soc Allergy Clin Immunol. 2010;40:85–93.

    CAS  Google Scholar 

  • Ahmad A, Shameem M, Husain Q. Relation of oxidant-antioxidant imbalance with disease progression in patients with asthma. Ann Thorac Med. 2012;7:226–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angelopoulou R, Lavranos G, Manolakou P. ROS in the aging male: model diseases with ROS-related pathophysiology. Reprod Toxicol Elmsford N. 2009;28:167–71.

    Article  CAS  Google Scholar 

  • Auerbach A, Hernandez ML. The effect of environmental oxidative stress on airway inflammation. Curr Opin Allergy Clin Immuno. 2012;12:133–9.

    Article  CAS  Google Scholar 

  • Baraldi E, Carraro S, Alinovi R, Pesci A, Ghiro L, Bodini A, Piacentini G, Zacchello F, Zanconato S. Cysteinyl leukotrienes and 8-isoprostane in exhaled breath condensate of children with asthma exacerbations. Thorax. 2003;58:505–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barreto M, Villa MP, Olita C, Martella S, Ciabattoni G, Montuschi P. 8-Isoprostane in exhaled breath condensate and exercise-induced bronchoconstriction in asthmatic children and adolescents. Chest. 2009;135:66–73.

    Article  PubMed  Google Scholar 

  • Basu S. F2-isoprostanes in human health and diseases: from molecular mechanisms to clinical implications. Antioxid Redox Signal. 2008;10:1405–34.

    Article  CAS  PubMed  Google Scholar 

  • Basu S. Fatty acid oxidation and isoprostanes: oxidative strain and oxidative stress. Prostaglandins Leukot Essent Fatty Acids. 2010;82:219–25.

    Article  CAS  PubMed  Google Scholar 

  • Block G, Dietrich M, Norkus EP, Morrow JD, Hudes M, Caan B, Packer L. Factors associated with oxidative stress in human populations. Am J Epidemiol. 2002;156:274–85.

    Article  PubMed  Google Scholar 

  • Bodini A, Peroni D, Vicentini L, Loiacono A, Baraldi E, Ghiro L, Corradi M, Alinovi R, Boner AL, Piacentini GL. Exhaled breath condensate eicosanoids and sputum eosinophils in asthmatic children: a pilot study. Pediatr Allergy Immunol Off Publ Eur Soc Pediatr Allergy Immunol. 2004;15:26–31.

    Article  CAS  Google Scholar 

  • Bono R, Degan R, Pazzi M, Romanazzi V, Rovere R. Benzene and formaldehyde in air of two Winter Olympic venues of “Torino 2006.” Environ Int. 2010a;36:269–75.

    Article  CAS  PubMed  Google Scholar 

  • Bono R, Romanazzi V, Munnia A, Piro S, Allione A, Ricceri F, Guarrera S, Pignata C, Matullo G, Wang P, Giese RW, Peluso M. Malondialdehyde-deoxyguanosine adduct formation in workers of pathology wards: the role of air formaldehyde exposure. Chem Res Toxicol. 2010b;23:1342–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bono R, Bellisario V, Romanazzi V, Pirro V, Piccioni P, Pazzi M, Bugiani M, Vincenti M. Oxidative stress in adolescent passive smokers living in urban and rural environments. Int J Hyg Environ Health. 2014;217:287–93.

    Google Scholar 

  • Bono R, Tassinari R, Bellisario V, Gilli G, Pazzi M, Pirro V, Mengozzi G, Bugiani M, Piccioni P. Urban air and tobacco smoke as conditions that increase the risk of oxidative stress and respiratory response in youth. Environ Res. 2015;137C:141–146.

    Google Scholar 

  • Campos C, Guzmán R, López-Fernández E, Casado Á. Urinary biomarkers of oxidative/nitrosative stress in healthy smokers. Inhal Toxicol. 2011;23:148–56.

    Article  PubMed  Google Scholar 

  • Comhair SAA, Erzurum SC. Redox control of asthma: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal. 2010;12:93–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corrêa SM, Martins EM, Arbilla G. Formaldehyde and acetaldehyde in a high traffic street of Rio de Janeiro, Brazil. Atmos Environ. 2003;37:23–9.

    Article  Google Scholar 

  • De Bont R, van Larebeke N. Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis. 2004;19:169–85.

    Article  PubMed  Google Scholar 

  • Dean RT, Gieseg S, Davies MJ. Reactive species and their accumulation on radical-damaged proteins. Trends Biochem Sci. 1993;18:437–41.

    Article  CAS  PubMed  Google Scholar 

  • Delfino RJ, Staimer N, Vaziri ND. Air pollution and circulating biomarkers of oxidative stress. Air Qual Atmos Health. 2010;4:37–52.

    Article  PubMed Central  Google Scholar 

  • Dworski R, Murray JJ, Roberts 2nd LJ, Oates JA, Morrow JD, Fisher L, Sheller JR. Allergen-induced synthesis of F(2)-isoprostanes in atopic asthmatics. Evidence for oxidant stress. Am J Respir Crit Care Med. 1999;160:1947–51.

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick AM, Teague WG, Holguin F, Yeh M, Brown LA, Severe Asthma Research Program. Airway glutathione homeostasis is altered in children with severe asthma: evidence for oxidant stress. J Allergy Clin Immunol. 2009;123:146–152 e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flyvholm MA, Andersen P. Identification of formaldehyde releasers and occurrence of formaldehyde and formaldehyde releasers in registered chemical products. Am J Ind Med. 1993;24:533–52.

    Article  CAS  PubMed  Google Scholar 

  • Godish T. Effect of ambient environmental factors on indoor formaldehyde levels. Atmos Environ. 1989a;23:1695–8.

    Article  CAS  Google Scholar 

  • Godish T. Formaldehyde exposures from tobacco smoke: a review. Am J Public Health. 1989b;79:1044–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths HR. The influence of diet on protein oxidation. Nutr Res Rev. 2002;15:3–17.

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B. Lipid peroxidation, antioxidants and cardiovascular disease: how should we move forward? Cardiovasc Res. 2000;47:410–18.

    Article  CAS  PubMed  Google Scholar 

  • Harman D. The aging process. Proc Natl Acad Sci U S A. 1981;78:7124–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IARC. Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol. IARC monographs on the evaluation of carcinogenic risks to humans 2007/03/21 ed., vol. 88. Lyon: International Agency for Research on Cancer. 2006; p. 1–478.

    Google Scholar 

  • Im H, Oh E, Mun J, Khim JY, Lee E, Kang HS, Kim E, Kim H, Won NH, Kim YH, Jung WW, Sul D. Evaluation of toxicological monitoring markers using proteomic analysis in rats exposed to formaldehyde. J Proteome Res. 2006;5:1354–66.

    Article  CAS  PubMed  Google Scholar 

  • Kelly TJ, Smith DL, Satola J. Emission Rates of Formaldehyde from Materials and Consumer Products Found in California Homes. Environ Sci Technol. 1999;33:81–8.

    Article  CAS  Google Scholar 

  • Kono Y, Fridovich I. Superoxide radical inhibits catalase. J Biol Chem. 1982;257:5751–4.

    CAS  PubMed  Google Scholar 

  • Kum C, Kiral F, Sekkin S, Seyrek K, Boyacioglu M. Effects of xylene and formaldehyde inhalations on oxidative stress in adult and developing rats livers. Exp Anim Jpn Assoc Lab Anim Sci. 2007;56:35–42.

    Article  CAS  Google Scholar 

  • Li Y, Nie J, Beyea J, Rudra CB, Browne RW, Bonner MR, Mu L, Trevisan M, Freudenheim JL. Exposure to traffic emissions: associations with biomarkers of antioxidant status and oxidative damage. Environ Res. 2013;121:31–8.

    Article  CAS  PubMed  Google Scholar 

  • Lykkesfeldt J. Malondialdehyde as biomarker of oxidative damage to lipids caused by smoking. Clin Chim Acta. 2007;380:50–8.

    Article  CAS  PubMed  Google Scholar 

  • Marnett LJ. Lipid peroxidation-DNA damage by malondialdehyde. Mutat Res. 1999;424:83–95.

    Article  CAS  PubMed  Google Scholar 

  • Migliore L, Coppede F. Environmental-induced oxidative stress in neurodegenerative disorders and aging. Mutat Res. 2009;674:73–84.

    Article  CAS  PubMed  Google Scholar 

  • Milne GL, Musiek ES, Morrow JD. F2-isoprostanes as markers of oxidative stress in vivo: an overview. Biomark Biochem Indic Expo Response Susceptibility Chem. 2005;10 Suppl 1:S10–23.

    CAS  Google Scholar 

  • Milne GL, Yin H, Brooks JD, Sanchez S, Jackson Roberts 2nd L, Morrow JD. Quantification of F2-isoprostanes in biological fluids and tissues as a measure of oxidant stress. Methods Enzymol. 2007;433:113–26.

    Article  CAS  PubMed  Google Scholar 

  • Milne GL, Yin H, Morrow JD. Human biochemistry of the isoprostane pathway. J Biol Chem. 2008;283:15533–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montuschi P, Corradi M, Ciabattoni G, Nightingale J, Kharitonov SA, Barnes PJ. Increased 8-isoprostane, a marker of oxidative stress, in exhaled condensate of asthma patients. Am J Respir Crit Care Med. 1999;160:216–20.

    Article  CAS  PubMed  Google Scholar 

  • Morrow JD, Frei B, Longmire AW, Gaziano JM, Lynch SM, Shyr Y, Strauss WE, Oates JA, Roberts LJ. Increase in circulating products of lipid peroxidation (F2-isoprostanes) in smokers. Smoking as a cause of oxidative damage. N Engl J Med. 1995;332:1198–203.

    Article  CAS  PubMed  Google Scholar 

  • Morrow JD, Zackert WE, Yang JP, Kurhts EH, Callewaert D, Dworski R, Kanai K, Taber DF, Moore K, Oates JA, Roberts LJ. Quantification of the major urinary metabolite of 15-F2t-isoprostane (8-iso-PGF2alpha) by a stable isotope dilution mass spectrometric assay. Anal Biochem. 1999;269:326–31.

    Article  CAS  PubMed  Google Scholar 

  • Moulton PV, Yang W. Air pollution, oxidative stress, and Alzheimer’s disease. J Environ Public Health. 2012;2012:472751.

    Article  PubMed  PubMed Central  Google Scholar 

  • Murphy DM, O’Byrne PM. Recent advances in the pathophysiology of asthma. Chest. 2010;137:1417–26.

    Article  CAS  PubMed  Google Scholar 

  • Narumiya S. Molecular diversity of prostanoid receptors; subtypes and isoforms of prostaglandin E receptor. Adv Exp Med Biol. 1997;400A:207–13.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen GD, Wolkoff P. Cancer effects of formaldehyde: a proposal for an indoor air guideline value. Arch Toxicol. 2010;84:423–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Praticò D, Basili S, Vieri M, Cordova C, Violi F, Fitzgerald GA. Chronic obstructive pulmonary disease is associated with an increase in urinary levels of isoprostane F2alpha-III, an index of oxidant stress. Am J Respir Crit Care Med. 1998;158:1709–14.

    Article  PubMed  Google Scholar 

  • Rager JE, Smeester L, Jaspers I, Sexton KG, Fry RC. Epigenetic changes induced by air toxics: formaldehyde exposure alters miRNA expression profiles in human lung cells. Environ Health Perspect. 2011;119:494–500.

    Article  CAS  PubMed  Google Scholar 

  • Rahman I. The role of oxidative stress in the pathogenesis of COPD: implications for therapy. Treat Respir Med. 2005;4:175–200.

    Article  PubMed  Google Scholar 

  • Roberts LJ, Reckelhoff JF. Measurement of F(2)-isoprostanes unveils profound oxidative stress in aged rats. Biochem Biophys Res Commun. 2001;287:254–6.

    Article  CAS  PubMed  Google Scholar 

  • Rokach J, Kim S, Bellone S, Lawson JA, Praticò D, Powell WS, FitzGerald GA. Total synthesis of isoprostanes: discovery and quantitation in biological systems. Chem Phys Lipids. 2004;128:35–56.

    Article  CAS  PubMed  Google Scholar 

  • Romanazzi V, Pirro V, Bellisario V, Mengozzi G, Peluso M, Pazzi M, Bugiani M, Verlato G, Bono R. 15-F2t isoprostane as biomarker of oxidative stress induced by tobacco smoke and occupational exposure to formaldehyde in workers of plastic laminates. Sci Total Environ. 2013;442:20–5.

    Article  CAS  PubMed  Google Scholar 

  • Rossner Jr P, Svecova V, Milcova A, Lnenickova Z, Solansky I, Sram RJ. Seasonal variability of oxidative stress markers in city bus drivers. Part I. Oxidative damage to DNA. Mutat Res. 2008a;642:14–20.

    Article  CAS  PubMed  Google Scholar 

  • Rossner Jr P, Svecova V, Milcova A, Lnenickova Z, Solansky I, Sram RJ. Seasonal variability of oxidative stress markers in city bus drivers. Part II. Oxidative damage to lipids and proteins. Mutat Res. 2008b;642:21–7.

    Article  CAS  PubMed  Google Scholar 

  • Rossner Jr P, Rossnerova A, Sram RJ. Oxidative stress and chromosomal aberrations in an environmentally exposed population. Mutat Res. 2011;707:34–41.

    Article  CAS  PubMed  Google Scholar 

  • Salo DC, Pacifici RE, Lin SW, Giulivi C, Davies KJ. Superoxide dismutase undergoes proteolysis and fragmentation following oxidative modification and inactivation. J Biol Chem. 1990;265:11919–27.

    CAS  PubMed  Google Scholar 

  • Salthammer T, Mentese S, Marutzky R. Formaldehyde in the indoor environment. Chem Rev. 2010;110:2536–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid O, Speit G. Genotoxic effects induced by formaldehyde in human blood and implications for the interpretation of biomonitoring studies. Mutagenesis. 2007;22:69–74.

    Article  CAS  PubMed  Google Scholar 

  • Schraufstatter I, Hyslop PA, Jackson JH, Cochrane CG. Oxidant-induced DNA damage of target cells. J Clin Invest. 1988;82:1040–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahid SK, Kharitonov SA, Wilson NM, Bush A, Barnes PJ. Exhaled 8-isoprostane in childhood asthma. Respir Res. 2005;6:79.

    Article  PubMed  PubMed Central  Google Scholar 

  • Slupphaug G, Kavli B, Krokan HE. The interacting pathways for prevention and repair of oxidative DNA damage. Mutat Res. 2003;531:231–51.

    Article  CAS  PubMed  Google Scholar 

  • Souvignet C, Cracowski JL, Stanke-Labesque F, Bessard G. Are isoprostanes a clinical marker for antioxidant drug investigation?. Fundam Clin Pharmacol. 2000;14:1–10.

    Article  CAS  PubMed  Google Scholar 

  • Speit G, Schutz P, Hogel J, Schmid O. Characterization of the genotoxic potential of formaldehyde in V79 cells. Mutagenesis. 2007;22:387–94.

    Article  CAS  PubMed  Google Scholar 

  • Tabatabaie T, Floyd RA. Susceptibility of glutathione peroxidase and glutathione reductase to oxidative damage and the protective effect of spin trapping agents. Arch Biochem Biophys. 1994;314:112–19.

    Article  CAS  PubMed  Google Scholar 

  • Uchiyama S, Inaba Y, Kunugita N. Determination of acrolein and other carbonyls in cigarette smoke using coupled silica cartridges impregnated with hydroquinone and 2,4-dinitrophenylhydrazine. J Chromatogr A. 2010;1217:4383–8.

    Article  CAS  PubMed  Google Scholar 

  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160:1–40.

    Article  CAS  PubMed  Google Scholar 

  • Voynow JA, Kummarapurugu A. Isoprostanes and asthma. Biochim Biophys Acta. 2011;1810:1091–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wedes SH, Khatri SB, Zhang R, Wu W, Comhair SA, Wenzel S, Teague WG, Israel E, Erzurum SC, Hazen SL. Noninvasive markers of airway inflammation in asthma. Clin Transl Sci. 2009;2:112–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolff SP, Dean RT. Fragmentation of proteins by free radicals and its effect on their susceptibility to enzymic hydrolysis. Biochem J. 1986;234:399–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolkoff P, Nielsen GD. Non-cancer effects of formaldehyde and relevance for setting an indoor air guideline. Environ Int. 2010;36:788–99.

    Article  CAS  PubMed  Google Scholar 

  • Wood LG, Simpson JL, Hansbro PM, Gibson PG. Potentially pathogenic bacteria cultured from the sputum of stable asthmatics are associated with increased 8-isoprostane and airway neutrophilia. Free Radic Res. 2010;44:146–54.

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Omaye ST. Air pollutants, oxidative stress and human health. Mutat Res. 2009;674:45–54.

    Article  CAS  PubMed  Google Scholar 

  • Yin K, Halushka PV, Yan YT, Wong PY. Antiaggregatory activity of 8-epi-prostaglandin F2 alpha and other F-series prostanoids and their binding to thromboxane A2/prostaglandin H2 receptors in human platelets. J Pharmacol Exp Ther. 1994;270:1192–6.

    CAS  PubMed  Google Scholar 

  • Zhang L, Freeman LE, Nakamura J, Hecht SS, Vandenberg JJ, Smith MT, Sonawane BR. Formaldehyde and leukemia: epidemiology, potential mechanisms, and implications for risk assessment. Environ Mol Mutagen. 2010a;51:181–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Tang X, Rothman N, Vermeulen R, Ji Z, Shen M, Qiu C, Guo W, Liu S, Reiss B, Freeman LB, Ge Y, Hubbard AE, Hua M, Blair A, Galvan N, Ruan X, Alter BP, Xin KX, Li S, Moore LE, Kim S, Xie Y, Hayes RB, Azuma M, Hauptmann M, Xiong J, Stewart P, Li L, Rappaport SM, et al.: Occupational exposure to formaldehyde, hematotoxicity, and leukemia-specific chromosome changes in cultured myeloid progenitor cells. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol 2010;19:80–88.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Bono .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Bono, R., Romanazzi, V. (2015). Isoprostanes as Biomarkers of Disease and Early Biological Effect. In: Preedy, V., Patel, V. (eds) General Methods in Biomarker Research and their Applications. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7696-8_25

Download citation

Publish with us

Policies and ethics