Skip to main content

Formalin-Fixed Paraffin-Embedded Tissue (FFPET) Sections for Nucleic Acid-Based Analysis in Biomarker Discovery and Early Drug Development

  • Reference work entry
  • First Online:
General Methods in Biomarker Research and their Applications

Abstract

Formalin-fixed paraffin-embedded tissue (FFPET) samples represent the clinical standard of tissue fixation, and huge archives of this material offer a valuable source for biomarker identification and validation. For this reason, techniques for efficient and reliable analysis of FFPET are important for rapid advances in personalized health care (PHC). This chapter focuses on the use of FFPET for nucleic acid biomarker verification by RNA and DNA analysis in clinical FFPET samples, describes in particular the workflow applied for hypothesis testing to determine quantitative expression levels of putative transcriptional biomarkers in different tumor FFPET samples, and gives an overview of current major applications for nucleic acid analyses from FFPET. Due to formalin fixation-caused modification and degradation of RNA and DNA, special attention is paid to the methods for nucleic acid isolation, because yield and quality of extracted nucleic acids are crucial for successful downstream applications. The described procedures usually achieve yields of several μg of high-quality RNA and DNA obtained from standard 5–10 μm FFPET sections; however, amounts significantly depend on factors like sample size, number of well-preserved cells, and tumor entity. A major application for isolated RNA is its use for reliable quantitative gene expression analysis by reverse transcription quantitative real-time PCR (RT-qPCR) assays based on optimized cDNA synthesis and quantitative real-time PCR (qPCR). In cases of very low starting material, an optimized pre-amplification protocol achieves an up to 4,000-fold increase in cDNA yields, thereby significantly improving the sensitivity of downstream applications. Pre-amplification is also implemented in a workflow for RT-qPCR analysis of microdissected material from immunohistochemically stained FFPET sections. This procedure permits capture of defined cell types in order to enhance specificity of gene expression profiling. Further applications for RNA analysis relate to expression profiling by microarrays and to a combination of genetic and transcriptional analysis by advanced RNA-Seq technology utilizing next-generation sequencing (NGS). The major applications described for DNA isolated from FFPET relate to qPCR and various approaches for mutation analysis. The overview comprises sequencing techniques including NGS as well as high-resolution melting (HRM) and allele-specific qPCR (AS qPCR). Additionally the use of FFPET for the analysis of epigenetic methylation patterns by methylation-sensitive HRM (MS-HRM) is addressed. The final chapter refers to the application of FFPET in clinical diagnostics of different cancer types. To date first approved IVD kits are available to analyze mutations as well as expression patterns of related marker genes and thus represent an essential precondition for prognosis, treatment decisions, and therapy in PHC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AS qPCR:

Allele-Specific qPCR

CGH:

Comparative Genomic Hybridization

Cq:

Quantification Cycle

CRC:

Colorectal Cancer

FFPET:

Formalin-Fixed Paraffin-Embedded Tissue

HPRT1:

Hypoxanthine Phosphoribosyltransferase 1

HRM:

High-Resolution Melting

LCM:

Laser Capture Microdissection

MRPL19:

Mitochondrial Ribosomal Protein L19

MS-HRM:

Methylation-Sensitive High-Resolution Melting

NGS:

Next Generation Sequencing

NSCLC:

Non-small Cell Lung Cancer

PHC:

Personalized Health Care

qPCR:

Quantitative Real-Time PCR

RIN:

RNA Integrity Number

RT-qPCR:

Reverse Transcription qPCR

References

  • Agendia NV. Symphony. http://www.agendia.com/pages/symphony/410.php

  • Anderson S, Bloom KJ, Vallera DU, et al. Multisite analytic performance studies of a real-time polymerase chain reaction assay for the detection of BRAF V600E mutations in formalin-fixed, paraffin-embedded tissue specimens of malignant melanoma. Arch Pathol Lab Med. 2012;136:1385–91.

    Article  CAS  PubMed  Google Scholar 

  • Bonin S, Hlubek F, Benhattar J, et al. Multicentre validation study of nucleic acids extraction from FFPE tissues. Virchows Arch. 2010;457:309–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borràs E, Jurado I, Hernan I, et al. Clinical pharmacogenomic testing of KRAS, BRAF and EGFR mutations by high resolution melting analysis and ultra-deep pyrosequencing. BMC Cancer. 2011;11:406.

    Article  PubMed  PubMed Central  Google Scholar 

  • Buckanovich RJ, Sasaroli D, O’brien-Jenkins A, et al. Use of immuno-LCM to identify the in situ expression profile of cellular constituents of the tumor microenvironment. Cancer Biol Ther. 2006;5:635–42.

    Article  CAS  PubMed  Google Scholar 

  • Budczies J, Weichert W, Noske A, et al. Genome-wide gene expression profiling of formalin-fixed paraffin-embedded breast cancer core biopsies using microarrays. J Histochem Cytochem. 2011;59:146–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–22.

    Article  CAS  PubMed  Google Scholar 

  • Castiglione F, Rossi Degl’Innocenti D, Taddei A, et al. Real-time PCR analysis of RNA extracted from formalin-fixed and paraffin-embeded tissues: effects of the fixation on outcome reliability. Appl Immunohistochem Mol Morphol. 2007;15:338–42.

    Article  CAS  PubMed  Google Scholar 

  • Cheng S, Koch WH, Wu L. Co-development of a companion diagnostic for targeted cancer therapy. N Biotechnol. 2012;29:682–8.

    Article  CAS  PubMed  Google Scholar 

  • Chung JY, Braunschweig T, Williams R, et al. Factors in tissue handling and processing that impact RNA obtained from formalin-fixed, paraffin-embedded tissue. J Histochem Cytochem. 2008;56:1033–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Classen S, Staratschek-Jox A, Schultze JL. Use of genome-wide high-throughput technologies in biomarker development. Biomark Med. 2008;2:509–24.

    Article  CAS  PubMed  Google Scholar 

  • Curry JL, Torres-Cabala CA, Tetzlaff MT, et al. Molecular platforms utilized to detect BRAF V600E mutation in melanoma. Semin Cutan Med Surg. 2012;31:267–73.

    Article  CAS  PubMed  Google Scholar 

  • Day E, Dear PH, McCaughan F. Digital PCR strategies in the development and analysis of molecular biomarkers for personalized medicine. Methods. 2013;59:101–7.

    Article  CAS  PubMed  Google Scholar 

  • de Kok JB, Roelofs RW, Giesendorf BA, et al. Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes. Lab Invest. 2005;85:154–9.

    Article  PubMed  Google Scholar 

  • Degrelle SA, Hennequet-Antier C, Chiapello H, et al. Amplification biases: possible differences among deviating gene expressions. BMC Genomics. 2008;9:46.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dequeker E, Ligtenberg MJ, Vander Borght S, et al. Mutation analysis of KRAS prior to targeted therapy in colorectal cancer: development and evaluation of quality by a European external quality assessment scheme. Virchows Arch. 2011;459:155–60.

    Article  PubMed  Google Scholar 

  • Derveaux S, Vandesompele J, Hellemans J. How to do successful gene expression analysis using real-time PCR. Methods. 2010;50:227–30.

    Article  CAS  PubMed  Google Scholar 

  • Devonshire AS, Sanders R, Wilkes TM, et al. Application of next generation qPCR and sequencing platforms to mRNA biomarker analysis. Methods. 2013;59:89–100.

    Article  CAS  PubMed  Google Scholar 

  • Drury S, Salter J, Baehner FL, et al. Feasibility of using tissue microarray cores of paraffin-embedded breast cancer tissue for measurement of gene expression: a proof-of-concept study. J Clin Pathol. 2010;63:513–7.

    Article  CAS  PubMed  Google Scholar 

  • Dufour A, Palermo G, Zellmeier E, et al. Inactivation of TP53 correlates with disease progression and low miR-34a expression in previously treated chronic lymphocytic leukemia patients. Blood. 2013;121:3650–7.

    Article  CAS  PubMed  Google Scholar 

  • Espina V, Wulfkuhle JD, Calvert VS, et al. Laser-capture microdissection. Nat Protoc. 2006;1:586–603.

    Article  CAS  PubMed  Google Scholar 

  • Fairley JA, Gilmour K, Walsh K. Making the most of pathological specimens: molecular diagnosis in formalin-fixed, paraffin embedded tissue. Curr Drug Targets. 2012;13:1475–87.

    Article  CAS  PubMed  Google Scholar 

  • Genomic Health, Inc.: Oncotype DX®. http://www.genomichealth.com/en-US/OncotypeDX.aspx#.UtfYPpV3vmJ

  • Grant KA, Apffelstaedt JP, Wright CA, et al. MammaPrint Pre-screen Algorithm (MPA) reduces chemotherapy in patients with early-stage breast cancer. S Afr Med J. 2013;103:522–6.

    Article  PubMed  Google Scholar 

  • Halait H, Demartin K, Shah S, et al. Analytical performance of a real-time PCR-based assay for V600 mutations in the BRAF gene, used as the companion diagnostic test for the novel BRAF inhibitor vemurafenib in metastatic melanoma. Diagn Mol Pathol. 2012;21:1–8.

    Article  CAS  PubMed  Google Scholar 

  • Harbeck N, Nimmrich I, Hartmann A, et al. Multicenter study using paraffin-embedded tumor tissue testing PITX2 DNA methylation as a marker for outcome prediction in tamoxifen-treated, node-negative breast cancer patients. J Clin Oncol. 2008;26:5036–42.

    Article  CAS  PubMed  Google Scholar 

  • Heredia NJ, Belgrader P, Wang S, et al. Droplet Digital™ PCR quantitation of HER2 expression in FFPE breast cancer samples. Methods. 2013;59:S20–3.

    Article  CAS  PubMed  Google Scholar 

  • Hong H, Goodsaid F, Shi L, et al. Molecular biomarkers: a US FDA effort. Biomark Med. 2010;4:215–25.

    Article  CAS  PubMed  Google Scholar 

  • How Kit A, Nielsen HM, Tost J. DNA methylation based biomarkers: practical considerations and applications. Biochimie. 2012;94:2314–37.

    Article  CAS  PubMed  Google Scholar 

  • Huang WY, Sheehy TM, Moore LE, et al. Simultaneous recovery of DNA and RNA from formalin-fixed paraffin-embedded tissue and application in epidemiologic studies. Cancer Epidemiol Biomarkers Prev. 2010;19:973–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Wang M. Personalized medicine in oncology: tailoring the right drug to the right patient. Biomark Med. 2010;4:523–33.

    Article  PubMed  Google Scholar 

  • Kalmar A, Wichmann B, Galamb O, et al. Gene expression analysis of normal and colorectal cancer tissue samples from fresh frozen and matched formalin-fixed, paraffin-embedded (FFPE) specimens after manual and automated RNA isolation. Methods. 2013a;59:S16–9.

    Article  CAS  PubMed  Google Scholar 

  • Kalmar A, Wichmann B, Spisák S, et al. Whole genome gene expression analysis using fresh and archive formalin-fixed, paraffin-embedded tissue (FFPET) samples. Application Note 2013b.

    Google Scholar 

  • Kanteti R, Yala S, Ferguson MK, et al. MET, HGF, EGFR, and PXN gene copy number in lung cancer using DNA extracts from FFPE archival samples and prognostic significance. J Environ Pathol Toxicol Oncol. 2009;28:89–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klopfleisch R, Weiss AT, Gruber AD. Excavation of a buried treasure–DNA, mRNA, miRNA and protein analysis in formalin fixed, paraffin embedded tissues. Histol Histopathol. 2011;26:797–810.

    CAS  PubMed  Google Scholar 

  • Kristensen LS, Wojdacz TK, Thestrup BB, et al. Quality assessment of DNA derived from up to 30 years old formalin fixed paraffin embedded (FFPE) tissue for PCR-based methylation analysis using SMART-MSP and MS-HRM. BMC Cancer. 2009;9:453.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lang AH, Drexel H, Geller-Rhomberg S, et al. Optimized allele-specific real-time PCR assays for the detection of common mutations in KRAS and BRAF. J Mol Diagn. 2011;13:23–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Brophy VH, Cao J, et al. Analytical performance of a PCR assay for the detection of KRAS mutations (codons12/13 and 61) in formalin-fixed paraffin-embedded tissue samples of colorectal carcinoma. Virchows Arch. 2012;460:141–9.

    Article  CAS  PubMed  Google Scholar 

  • Loewe RP. Combinational usage of next generation sequencing and qPCR for the analysis of tumor samples. Methods. 2013;59:126–31.

    Article  CAS  PubMed  Google Scholar 

  • Lohmann S, Herold A, Bergauer T, et al. Gene expression analysis in biomarker research and early drug development using function tested reverse transcription quantitative real-time PCR assays. Methods. 2013;59:10–9.

    Article  CAS  PubMed  Google Scholar 

  • Masuda N, Ohnishi T, Kawamoto S, et al. Analysis of chemical modification of RNA from formalin-fixed samples and optimization of molecular biology applications for such samples. Nucleic Acids Res. 1999;27:4436–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miles DW, de Haas SL, Dirix LY, et al. Biomarker results from the AVADO phase 3 trial of first-line bevacizumab plus docetaxel for HER2-negativemetastatic breast cancer. Br J Cancer. 2013;108:1052–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niland EE, McGuire A, Cox MH, et al. High quality DNA obtained with an automated DNA extraction method with 70+ year old formalin-fixed celloidin-embedded (FFCE) blocks from the Indiana medical history museum. Am J Transl Res. 2012;4:198–205.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nitsche U, Rosenberg R, Balmert A, et al. Integrative marker analysis allows risk assessment for metastasis in stage II colon cancer. Ann Surg. 2012;256:763–71; discussion 771.

    Article  PubMed  Google Scholar 

  • Noutsias M, Rohde M, Block A, et al. Preamplification techniques for real-time RT-PCR analyses of endomyocardial biopsies. BMC Mol Biol. 2008;9:3.

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Donnell P, Ferguson J, Shyu J, et al. Analytic performance studies and clinical reproducibility of a real-time PCR assay for the detection of epidermal growth factor receptor gene mutations in formalin-fixed paraffin-embedded tissue specimens of non-small cell lung cancer. BMC Cancer. 2013;13:210.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ozsolak F, Milos PM. RNA sequencing: advances, challenges and opportunities. Nat Rev Genet. 2011;12:87–98.

    Article  CAS  PubMed  Google Scholar 

  • Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351:2817–26.

    Article  CAS  PubMed  Google Scholar 

  • Personalized Medicine Coalition. http://www.personalizedmedicinecoalition.org/. Accessed 30 July 2015

  • Querings S, Altmüller J, Ansén S, et al. Benchmarking of mutation diagnostics in clinical lung cancer specimens. PLoS One. 2011;6:e19601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed GH, Kent JO, Wittwer CT. High-resolution DNA melting analysis for simple and efficient molecular diagnostics. Pharmacogenomics. 2007;8:597–608.

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro-Silva A, Zhang H, Jeffrey SS. RNA extraction from ten year old formalin-fixed paraffin-embedded breast cancer samples: a comparison of column purification and magnetic bead-based technologies. BMC Mol Biol. 2007;8:118.

    Article  PubMed  PubMed Central  Google Scholar 

  • Riedmaier I, Pfaffl MW. Transcriptional biomarkers–high throughput screening, quantitative verification, and bioinformatical validation methods. Methods. 2013;59:3–9.

    Article  CAS  PubMed  Google Scholar 

  • Roche Applied Science. High Pure FFPET DNA Isolation Kit, Product No. 06650767001. https://cssportal.roche.com/LFR_PublicDocs/ras/06650767001_en_02.pdf. Accessed 30 July 2013.

  • Roche Applied Science. High Pure FFPET RNA Isolation Kit, Product No. 06650775001. https://cssportal.roche.com/LFR_PublicDocs/ras/06650775001_en_03.pdf. Accessed 30 July 2013.

  • Roche Applied Science. https://configurator.realtimeready.roche.com/assaysupply_cp/login.jsf. Accessed 30 July 2013.

  • Roche Applied Science. MagNA Pure 96 Cellular RNA Large Volume Kit, Product No. 05467535001. https://cssportal.roche.com/LFR_PublicDocs/ras/05467535001_en_07.pdf. Accessed 30 July 2013.

  • Roche Applied Science. MagNA Pure LC DNA Isolation Kit II (Tissue), Product No. 03186229001. https://cssportal.roche.com/LFR_PublicDocs/ras/03186229001_en_12.pdf. Accessed 30 July 2013.

  • Roche Applied Science. RealTime ready cDNA Pre-Amp Master, Product No. 06720455001. https://cssportal.roche.com/LFR_PublicDocs/ras/06720455001_en_01.pdf. Accessed 30 July 2013.

  • Roche Applied Science. Transcriptor First Strand cDNA Synthesis Kit, Product No. 04379012001. https://cssportal.roche.com/LFR_PublicDocs/ras/04379012001_en_06.pdf. Accessed 30 July 2013.

  • Rodriguez-Gonzalez FG, Mustafa DA, Mostert B, et al. The challenge of gene expression profiling in heterogeneous clinical samples. Methods. 2013;59:47–58.

    Article  CAS  PubMed  Google Scholar 

  • Ronaghi M, Shokralla S, Gharizadeh B. Pyrosequencing for discovery and analysis of DNA sequence variations. Pharmacogenomics. 2007;8:1437–41.

    Article  CAS  PubMed  Google Scholar 

  • Sadi AM, Wang DY, Youngson BJ, et al. Clinical relevance of DNA microarray analyses using archival formalin-fixed paraffin-embedded breast cancer specimens. BMC Cancer. 2011;11(253):1–13.

    Google Scholar 

  • Sanders R, Huggett JF, Bushell CA, et al. Evaluation of digital PCR for absolute DNA quantification. Anal Chem. 2011;83:6474–84.

    Article  CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74:5463–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sapino A, Roepman P, Linn SC, et al. MammaPrint molecular diagnostics on formalin-fixed, paraffin-embedded tissue. J Mol Diagn. 2013;16(2):190–197

    Google Scholar 

  • Schuster J. Immuno-laser capture mikrodissektion von formalin-fixiertem Gewebe für RT-qPCR-Analysen. 2013; diploma thesis submitted March 2013 at the Hochschule Weihenstephan-Triesdorf, Fakultät Biotechnologie und Bioinformatik.

    Google Scholar 

  • Schuster J, Bahle B, Herold A, et al. RT-qPCR analysis of micro-dissected material from stained FFPET section WO 2014/114650 Al 2014.

    Google Scholar 

  • Schweiger MR, Kerick M, Timmermann B, et al. Genome-wide massively parallel sequencing of formaldehyde fixed-paraffin embedded (FFPE) tumor tissues for copy-number- and mutation-analysis. PLoS One. 2009;4:e5548.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sinicropi D, Qu K, Collin F, et al. Whole transcriptome RNA-Seq analysis of breast cancer recurrence risk using formalin-fixed paraffin-embedded tumor tissue. PLoS One. 2012;7:e40092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stein U, Walther W, Arlt F, et al. MACC1, a newly identified key regulator of HGF-MET signaling, predicts colon cancer metastasis. Nat Med. 2009;15:59–67.

    Article  CAS  PubMed  Google Scholar 

  • Tan YH, Liu Y, Eu KW, et al. Detection of BRAF V600E mutation by pyrosequencing. Pathology. 2008;40:295–8.

    Article  CAS  PubMed  Google Scholar 

  • Thirlwell C, Eymard M, Feber A, et al. Genome-wide DNA methylation analysis of archival formalin-fixed paraffin-embedded tissue using the Illumina Infinium HumanMethylation27 BeadChip. Methods. 2010;52:248–54.

    Article  CAS  PubMed  Google Scholar 

  • Thomas M, Poignée-Heger M, Weisser M, et al. An optimized workflow for improved gene expression profiling for formalin-fixed, paraffin-embedded tumor samples. J Clin Bioinform. 2013;3:10.

    Article  Google Scholar 

  • Tost J. DNA methylation: an introduction to the biology and the disease-associated changes of a promising biomarker. Methods Mol Biol. 2009;507:3–20.

    Article  CAS  PubMed  Google Scholar 

  • Turashvili G, Yang W, McKinney S, et al. Nucleic acid quantity and quality from paraffin blocks: defining optimal fixation, processing and DNA/RNA extraction techniques. Exp Mol Pathol. 2012;92:33–43.

    Article  CAS  PubMed  Google Scholar 

  • van Beers EH, Joosse SA, Ligtenberg MJ. A multiplex PCR predictor for a CGH success of FFPE samples. Br J Cancer. 2006;94(2):333–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:RESEARCH0034.

    Google Scholar 

  • Vargas GA. Personalized healthcare: how to improve outcomes by increasing benefit and decreasing risk through the use of biomarkers. Biomark Med. 2009;3:701–9.

    Article  PubMed  Google Scholar 

  • von Ahlfen S, Missel A, Bendrat K, et al. Determinants of RNA quality from FFPE samples. PLoS One. 2007;2:e1261.

    Article  Google Scholar 

  • Wagle N, Berger MF, Davis MJ, et al. High-throughput detection of actionable genomic alterations in clinical tumor samples by targeted, massively parallel sequencing. Cancer Discov. 2012;2:82–93.

    Article  CAS  PubMed  Google Scholar 

  • Wojdacz TK. The limitations of locus specific methylation qualification and quantification in clinical material. Front Genet. 2012;3:21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wojdacz TK, Dobrovic A. Methylation-sensitive high resolution melting (MS-HRM): a new approach for sensitive and high-throughput assessment of methylation. Nucleic Acids Res. 2007;35:e41.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Lohmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Lohmann, S., Bahle, B., Herold, A., Schuster, J. (2015). Formalin-Fixed Paraffin-Embedded Tissue (FFPET) Sections for Nucleic Acid-Based Analysis in Biomarker Discovery and Early Drug Development. In: Preedy, V., Patel, V. (eds) General Methods in Biomarker Research and their Applications. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7696-8_24

Download citation

Publish with us

Policies and ethics