Skip to main content

FABP3 as Biomarker of Heart Pathology

  • Reference work entry
  • First Online:

Abstract

A complete understanding of the mechanisms leading to release of a protein used as a biomarker is fundamental for improving decisions on which biomarker to use for which specific pathology and how to combine biomarkers to aid the clinical assessment of patients. With the discovery of new regulatory machinery – such as posttranslational inhibition of mRNAs by microRNAs – previous knowledge must be updated and modified. The potential use of fatty-acid-binding protein 3 (FABP3) in evaluating cardiovascular pathologies is no exception in this regard. FABP3 is a small protein that is abundantly expressed in the cytoplasm of cardiomyocytes and that has been proposed as an early biomarker of myocardial injury. We highlight here new findings on the mechanisms leading to secretion of FABP3 and specifically how a striated muscle-specific microRNA, namely, miR-1, regulates the expression of FABP3 in different cardiac pathologies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AMI:

Acute Myocardial Infarction

AS:

Aortic Stenosis

cTn:

Cardiac Troponin

FABP3:

Fatty-Acid-Binding Protein 3

GH:

Growth Hormone

HEK 293:

Human Embryonic Kidney 293 Cell Line

IGF1:

Insulin-Like Growth Factor 1

miRNA/miR:

microRNA

PCR:

Polymerase Chain Reaction

PPAR:

Peroxisome Proliferator-Activated Receptor

RISC:

RNA-Induced Silencing Complex

TAC:

Transverse Aortic Constriction

UTR:

Untranslated Region

References

  • Anderson JL, Adams CD, Antman EM, Bridges CR, Califf RM, Casey Jr DE, et al. ACC/AHA 2007 guidelines for the management of patients with unstable angina/non ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines for the Management of Patients With Unstable Angina/Non ST-Elevation Myocardial Infarction): developed in collaboration with the American College of Emergency Physicians, the Society for Cardiovascular Angiography and Interventions, and the Society of Thoracic Surgeons: endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation and the Society for Academic Emergency Medicine. Circulation. 2007;116:e148–304.

    Article  PubMed  Google Scholar 

  • Appasani K. Introduction. In: Appasani K, editor. MicroRNAs: from basic science to disease biology. London: Cambridge University Press. 2009;1:1–3.

    Google Scholar 

  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binas B, Danneberg H, McWhir J, Mullins L, Clark AJ. Requirement for the heart-type fatty acid binding protein in cardiac fatty acid utilization. FASEB J. 1999;13:805–12.

    CAS  PubMed  Google Scholar 

  • Boudina S, Abel ED. Diabetic cardiomyopathy revisited. Circulation. 2007;115:3213–23.

    Article  PubMed  Google Scholar 

  • Braunwald E. Myocardial reperfusion, limitation of infarct size, reduction of left ventricular dysfunction, and improved survival. Should the paradigm be expanded? Circulation. 1989;79:441–4.

    Article  CAS  PubMed  Google Scholar 

  • Bruins Slot MH, Reitsma JB, Rutten FH, Hoes AW, van der Heijden GJ. Heart-type fatty acid-binding protein in the early diagnosis of acute myocardial infarction: a systematic review and meta-analysis. Heart. 2010;96:1957–63.

    Article  CAS  PubMed  Google Scholar 

  • Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007;13:613–8.

    Article  CAS  PubMed  Google Scholar 

  • Colao A. The GH-IGF-I axis and the cardiovascular system: clinical implications. Clin Endocrinol (Oxf). 2008;69:347–58.

    Article  CAS  Google Scholar 

  • Comunian C, Rusconi F, De Palma A, Brunetti P, Catalucci D, Mauri PL. A comparative MudPIT analysis identifies different expression profiles in heart compartments. Proteomics. 2011;11:2320–8.

    Article  CAS  PubMed  Google Scholar 

  • Elia L, Contu R, Quintavalle M, Varrone F, Chimenti C, Russo MA, et al. Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation. 2009;120:2377–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glatz JF, van Bilsen M, Paulussen RJ, Veerkamp JH, van der Vusse GJ, Reneman RS. Release of fatty acid-binding protein from isolated rat heart subjected to ischemia and reperfusion or to the calcium paradox. Biochim Biophys Acta. 1988;961:148–52.

    Article  CAS  PubMed  Google Scholar 

  • Glatz JF, Kleine AH, van Nieuwenhoven FA, Hermens WT, van Dieijen-Visser MP, van der Vusse GJ. Fatty-acid-binding protein as a plasma marker for the estimation of myocardial infarct size in humans. Br Heart J. 1994a;71:135–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glatz JF, van Breda E, Keizer HA, de Jong YF, Lakey JR, Rajotte RV, et al. Rat heart fatty acid-binding protein content is increased in experimental diabetes. Biochem Biophys Res Commun. 1994b;199:639–46.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths-Jones S. The microRNA registry. Nucleic Acids Res. 2004;32:D109–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haastrup B, Gill S, Kristensen SR, Jorgensen PJ, Glatz JF, Haghfelt T, et al. Biochemical markers of ischaemia for the early identification of acute myocardial infarction without St segment elevation. Cardiology. 2000;94:254–61.

    Article  CAS  PubMed  Google Scholar 

  • Helledie T, Antonius M, Sorensen RV, Hertzel AV, Bernlohr DA, Kolvraa S, et al. Lipid-binding proteins modulate ligand-dependent trans-activation by peroxisome proliferator-activated receptors and localize to the nucleus as well as the cytoplasm. J Lipid Res. 2000;41:1740–51.

    CAS  PubMed  Google Scholar 

  • Hill JA, Olson EN. Mechanisms of disease: cardiac plasticity. N Engl J Med. 2008;358:1370–80.

    Article  CAS  PubMed  Google Scholar 

  • Jaffe AS. Chasing troponin: how low can you go if you can see the rise? J Am Coll Cardiol. 2006;48:1763–4.

    Article  PubMed  Google Scholar 

  • Karbek B, Ozbek M, Bozkurt NC, Ginis Z, Gungunes A, Unsal IO, et al. Heart-type fatty acid binding protein (H-FABP): relationship with arterial intima-media thickness and role as diagnostic marker for atherosclerosis in patients with impaired glucose metabolism. Cardiovasc Diabetol. 2011;10:37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilcullen N, Viswanathan K, Das R, Morrell C, Farrin A, Barth JH, et al. Heart-type fatty acid-binding protein predicts long-term mortality after acute coronary syndrome and identifies high-risk patients across the range of troponin values. J Am Coll Cardiol. 2007;50:2061–7.

    Article  CAS  PubMed  Google Scholar 

  • Kleine AH, Glatz JF, Van Nieuwenhoven FA, Van der Vusse GJ. Release of heart fatty acid-binding protein into plasma after acute myocardial infarction in man. Mol Cell Biochem. 1992;116:155–62.

    Article  CAS  PubMed  Google Scholar 

  • Knowlton AA, Apstein CS, Saouf R, Brecher P. Leakage of heart fatty acid binding protein with ischemia and reperfusion in the rat. J Mol Cell Cardiol. 1989;21:577–83.

    Article  CAS  PubMed  Google Scholar 

  • Kragten JA, van Nieuwenhoven FA, van Dieijen-Visser MP, Theunissen PH, Hermens WT, Glatz JF. Distribution of myoglobin and fatty acid-binding protein in human cardiac autopsies. Clin Chem. 1996;42:337–8.

    CAS  PubMed  Google Scholar 

  • Lawrence JW, Kroll DJ, Eacho PI. Ligand-dependent interaction of hepatic fatty acid-binding protein with the nucleus. J Lipid Res. 2000;41:1390–401.

    CAS  PubMed  Google Scholar 

  • Liu B, Li J, Cairns MJ. Identifying miRNAs, targets and functions. Brief: Bioinform; 2012.

    Google Scholar 

  • Lombardi G, Galdiero M, Auriemma RS, Pivonello R, Colao A. Acromegaly and the cardiovascular system. Neuroendocrinology. 2006;83:211–7.

    Article  CAS  PubMed  Google Scholar 

  • Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010;90:207–58.

    Article  CAS  PubMed  Google Scholar 

  • Matsui Y, Satoh K, Mutsukura K, Watanabe T, Nishida N, Matsuda H, et al. Development of an ultra-rapid diagnostic method based on heart-type fatty acid binding protein levels in the CSF of CJD patients. Cell Mol Neurobiol. 2010;30:991–9.

    Article  CAS  PubMed  Google Scholar 

  • Mayr M, Zampetaki A, Willeit P, Willeit J, Kiechl S. MicroRNAs within the continuum of postgenomics biomarker discovery. Arterioscler Thromb Vasc Biol. 2013;33:206–14.

    Article  CAS  PubMed  Google Scholar 

  • McCann CJ, Glover BM, Menown IB, Moore MJ, McEneny J, Owens CG, et al. Prognostic value of a multimarker approach for patients presenting to hospital with acute chest pain. Am J Cardiol. 2009;103:22–8.

    Article  PubMed  Google Scholar 

  • Meng X, Ming M, Wang E. Heart fatty acid binding protein as a marker for postmortem detection of early myocardial damage. Forensic Sci Int. 2006;160:11–6.

    Article  CAS  PubMed  Google Scholar 

  • Meunier-Durmort C, Poirier H, Niot I, Forest C, Besnard P. Up-regulation of the expression of the gene for liver fatty acid-binding protein by long-chain fatty acids. Biochem J. 1996;319(Pt 2):483–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105:10513–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrow DA, Cannon CP, Jesse RL, Newby LK, Ravkilde J, Storrow AB, et al. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines: clinical characteristics and utilization of biochemical markers in acute coronary syndromes. Circulation. 2007;115:e356–75.

    Article  PubMed  Google Scholar 

  • Murphy EJ, Barcelo-Coblijn G, Binas B, Glatz JF. Heart fatty acid uptake is decreased in heart fatty acid-binding protein gene-ablated mice. J Biol Chem. 2004;279:34481–8.

    Article  CAS  PubMed  Google Scholar 

  • Nakata T, Hashimoto A, Hase M, Tsuchihashi K, Shimamoto K. Human heart-type fatty acid-binding protein as an early diagnostic and prognostic marker in acute coronary syndrome. Cardiology. 2003;99:96–104.

    Article  CAS  PubMed  Google Scholar 

  • O’Donoghue M, de Lemos JA, Morrow DA, Murphy SA, Buros JL, Cannon CP, et al. Prognostic utility of heart-type fatty acid binding protein in patients with acute coronary syndromes. Circulation. 2006;114:550–7.

    Article  PubMed  Google Scholar 

  • Ockner RK, Manning JA, Poppenhausen RB, Ho WK. A binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium, and other tissues. Science. 1972;177:56–8.

    Article  CAS  PubMed  Google Scholar 

  • Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 2012;13:271–82.

    CAS  PubMed  Google Scholar 

  • Paulussen RJ, van Moerkerk HT, Veerkamp JH. Immunochemical quantitation of fatty acid-binding proteins. Tissue distribution of liver and heart FABP types in human and porcine tissues. Int J Biochem. 1990;22:393–8.

    Article  CAS  PubMed  Google Scholar 

  • Pelsers MM, Lutgerink JT, Nieuwenhoven FA, Tandon NN, van der Vusse GJ, Arends JW, et al. A sensitive immunoassay for rat fatty acid translocase (CD36) using phage antibodies selected on cell transfectants: abundant presence of fatty acid translocase/CD36 in cardiac and red skeletal muscle and up-regulation in diabetes. Biochem J. 1999;337(Pt 3):407–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelsers MM, Hermens WT, Glatz JF. Fatty acid-binding proteins as plasma markers of tissue injury. Clin Chim Acta. 2005;352:15–35.

    Article  CAS  PubMed  Google Scholar 

  • Poirier H, Niot I, Monnot MC, Braissant O, Meunier-Durmort C, Costet P, et al. Differential involvement of peroxisome-proliferator-activated receptors alpha and delta in fibrate and fatty-acid-mediated inductions of the gene encoding liver fatty-acid-binding protein in the liver and the small intestine. Biochem J. 2001;355:481–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollack Jr CV, Braunwald E. 2007 update to the ACC/AHA guidelines for the management of patients with unstable angina and non-ST-segment elevation myocardial infarction: implications for emergency department practice. Ann Emerg Med. 2008;51:591–606.

    Article  PubMed  Google Scholar 

  • Sawaya F, Liff D, Stewart J, Lerakis S, Babaliaros V. Aortic stenosis: a contemporary review. Am J Med Sci. 2012;343:490–6.

    Article  PubMed  Google Scholar 

  • Sayed D, Hong C, Chen IY, Lypowy J, Abdellatif M. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res. 2007;100:416–24.

    Article  CAS  PubMed  Google Scholar 

  • Schaap FG, Binas B, Danneberg H, van der Vusse GJ, Glatz JF. Impaired long-chain fatty acid utilization by cardiac myocytes isolated from mice lacking the heart-type fatty acid binding protein gene. Circ Res. 1999;85:329–37.

    Article  CAS  PubMed  Google Scholar 

  • Schroeder F, Petrescu AD, Huang H, Atshaves BP, McIntosh AL, Martin GG, et al. Role of fatty acid binding proteins and long chain fatty acids in modulating nuclear receptors and gene transcription. Lipids. 2008;43:1–17.

    Article  CAS  PubMed  Google Scholar 

  • Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005;85:1093–129.

    Article  CAS  PubMed  Google Scholar 

  • Storlien L, Oakes ND, Kelley DE. Metabolic flexibility. Proc Nutr Soc. 2004;63:363–8.

    Article  CAS  PubMed  Google Scholar 

  • Tan Gana NH, Victoriano AF, Okamoto T. Evaluation of online miRNA resources for biomedical applications. Genes Cells. 2012;17:11–27.

    Article  PubMed  Google Scholar 

  • Tan NS, Shaw NS, Vinckenbosch N, Liu P, Yasmin R, Desvergne B, et al. Selective cooperation between fatty acid binding proteins and peroxisome proliferator-activated receptors in regulating transcription. Mol Cell Biol. 2002;22:5114–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka T, Hirota Y, Sohmiya K, Nishimura S, Kawamura K. Serum and urinary human heart fatty acid-binding protein in acute myocardial infarction. Clin Biochem. 1991;24:195–201.

    Article  CAS  PubMed  Google Scholar 

  • Tang MK, Kindler PM, Cai DQ, Chow PH, Li M, Lee KK. Heart-type fatty acid binding proteins are upregulated during terminal differentiation of mouse cardiomyocytes, as revealed by proteomic analysis. Cell Tissue Res. 2004;316:339–47.

    Article  CAS  PubMed  Google Scholar 

  • Tarnavski O. Mouse surgical models in cardiovascular research. Methods Mol Biol. 2009;573:115–37.

    Article  PubMed  Google Scholar 

  • Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, et al. Third universal definition of myocardial infarction. J Am Coll Cardiol. 2012;60:1581–98.

    Article  PubMed  Google Scholar 

  • Troxler RF, Offner GD, Jiang JW, Wu BL, Skare JC, Milunsky A, et al. Localization of the gene for human heart fatty acid binding protein to chromosome 1p32-1p33. Hum Genet. 1993;92:563–6.

    Article  CAS  PubMed  Google Scholar 

  • Van Nieuwenhoven FA, Kleine AH, Wodzig WH, Hermens WT, Kragten HA, Maessen JG, et al. Discrimination between myocardial and skeletal muscle injury by assessment of the plasma ratio of myoglobin over fatty acid-binding protein. Circulation. 1995;92:2848–54.

    Article  PubMed  Google Scholar 

  • van Rooij E, Olson EN. MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. J Clin Invest. 2007;117:2369–76.

    Article  PubMed  PubMed Central  Google Scholar 

  • Varrone F, Gargano B, Carullo P, Di Silvestre D, De Palma A, Grasso L, et al. The circulating level of FABP3 is an indirect biomarker of microRNA-1. J Am Coll Cardiol. 2013;61:88–95.

    Article  CAS  PubMed  Google Scholar 

  • Veerkamp JH, van Moerkerk HT. Fatty acid-binding protein and its relation to fatty acid oxidation. Mol Cell Biochem. 1993;123:101–6.

    Article  CAS  PubMed  Google Scholar 

  • Venkatachalam AB, Sawler DL, Wright JM. Tissue-specific transcriptional modulation of fatty acid-binding protein genes, fabp2, fabp3 and fabp6, by fatty acids and the peroxisome proliferator, clofibrate, in zebrafish (Danio rerio). Gene. 2013;520:14–21.

    Article  CAS  PubMed  Google Scholar 

  • Viswanathan K, Kilcullen N, Morrell C, Thistlethwaite SJ, Sivananthan MU, Hassan TB, et al. Heart-type fatty acid-binding protein predicts long-term mortality and re-infarction in consecutive patients with suspected acute coronary syndrome who are troponin-negative. J Am Coll Cardiol. 2010;55:2590–8.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Wakabayashi H, Veerkamp JH, Ono T, Suzuki T. Immunohistochemical distribution of heart-type fatty acid-binding protein immunoreactivity in normal human tissues and in acute myocardial infarct. J Pathol. 1993;170:59–65.

    Article  CAS  PubMed  Google Scholar 

  • Wolfrum C, Borrmann CM, Borchers T, Spener F. Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors alpha – and gamma-mediated gene expression via liver fatty acid binding protein: a signaling path to the nucleus. Proc Natl Acad Sci U S A. 2001;98:2323–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (2011) Global status report on noncommunicable diseases 2010: description of the global burden of NCDs, their risk factors and determinants, pp 1–176

    Google Scholar 

  • Yaffe D, Saxel O. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature. 1977;270:725–7.

    Article  CAS  PubMed  Google Scholar 

  • Zanotti G, Scapin G, Spadon P, Veerkamp JH, Sacchettini JC. Three-dimensional structure of recombinant human muscle fatty acid-binding protein. J Biol Chem. 1992;267:18541–50.

    CAS  PubMed  Google Scholar 

  • Zschiesche W, Kleine AH, Spitzer E, Veerkamp JH, Glatz JF. Histochemical localization of heart-type fatty-acid binding protein in human and murine tissues. Histochem Cell Biol. 1995;103:147–56.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluigi Condorelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Catalucci, D., Latronico, M.V.G., Condorelli, G. (2015). FABP3 as Biomarker of Heart Pathology. In: Preedy, V., Patel, V. (eds) General Methods in Biomarker Research and their Applications. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7696-8_22

Download citation

Publish with us

Policies and ethics