Skip to main content

Toxicogenomic and Pharmacogenomic Biomarkers for Drug Discovery and Personalized Medicine

  • Reference work entry
  • First Online:
  • 2510 Accesses

Abstract

Safety is the main cause for failure of novel drug candidates, underscoring the needs for improvement. The emergence of toxicity during the late stages of drug development may necessitate a return to seed compound screening, because toxicity is often inherent to the basic structure and is thus difficult to be eliminated by minor modification. An urgent need therefore exists for safety biomarkers that enable prediction of potential toxicity and prioritization of candidate compounds during the early stages of drug discovery and development. The use of biomarkers in the early stages of drug development will ensure that drug candidates are safe before they are administered to humans. Toxicogenomics is a promising approach to identify genomic biomarkers associated with specific mechanisms of toxicity induced by drug treatment. Toxicogenomic biomarkers are applicable for efficient screening of drug candidates at an early stage of drug development, resulting in a significant reduction in the time and cost associated with development of new molecular entities. A more detailed appreciation of the molecular mechanisms associated with a given toxicity potentially facilitates an enhanced ability to translate the finding from animals to human in the context of safety evaluation. The advent of toxicogenomic technologies had also accelerated the understanding of individual differences in genetic susceptibility to therapeutic agents in the clinical setting. Such efforts on toxicogenomics and pharmacogenomics have facilitated identification of new genetic biomarkers that can provide predictive tools for improved drug response and fewer adverse drug reactions. This chapter provides the current scientific state-of-the-art and future perspectives on toxicogenomic and pharmacogenomic biomarkers in drug discovery. Advent in toxicogenomic and pharmacogenomic strategies could have significant impacts in shifting unpredictable, mechanistically unclear events to predictable, manageable risks, providing the drug with a clear value.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

DPD:

Dihydropyrimidine Dehydrogenase

EMs:

Extensive Metabolizers

FDA:

Food and Drug Administration

IMs:

Intermediate Metabolizers

MTD:

Maximum Tolerated Dose

PCA:

Principal Component Analysis

PMs:

Poor Metabolizer

SNPs:

Single-Nucleotide Polymorphisms

TGP:

Toxicogenomics Project in Japan

TPMT:

Thiopurine S-Methyltransferase

UMs:

Ultrarapid Metabolizer

References

  • Albertini L, Siest G, Jeannesson E, et al. Availability of pharmacogenetic and pharmacogenomic information in anticancer drug monographs in France: personalized cancer therapy. Pharmacogenomics. 2011;12:681–91.

    Article  PubMed  Google Scholar 

  • Auerbach SS, Shah RR, Mav D, et al. Predicting the hepatocarcinogenic potential of alkenylbenzene flavoring agents using toxicogenomics and machine learning. Toxicol Appl Pharmacol. 2010;243:300–14.

    Article  CAS  PubMed  Google Scholar 

  • Barrett T, Suzek TO, Troup DB, et al. NCBI GEO: mining millions of expression profiles–database and tools. Nucleic Acids Res. 2005;33(Database issue):D562–6.

    Article  CAS  PubMed  Google Scholar 

  • Brazma A, Parkinson H, Sarkans U, et al. ArrayExpress–a public repository for microarray gene expression data at the EBI. Nucleic Acids Res. 2003;31:68–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhry AS, Kochhar R, Kohli KK. Genetic polymorphism of CYP2C19 & therapeutic response to proton pump inhibitors. Indian J Med Res. 2008;127:521–30.

    CAS  PubMed  Google Scholar 

  • Chen Q, Zhang T, Wang JF, et al. Advances in human cytochrome p450 and personalized medicine. Curr Drug Metab. 2011;12:436–44.

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Zhang M, Borlak J, et al. A decade of toxicogenomic research and its contribution to toxicological science. Toxicol Sci. 2012;130:217–28.

    Article  CAS  PubMed  Google Scholar 

  • Cohen JC, Hobbs HH. Genetics. Simple genetics for a complex disease. Science. 2013;340:689–90.

    Article  CAS  PubMed  Google Scholar 

  • Colleoni L, Kapetis D, Maggi L, et al. A new thiopurine s-methyltransferase haplotype associated with intolerance to azathioprine. J Clin Pharmacol. 2013;53:67–74.

    Article  CAS  PubMed  Google Scholar 

  • Corominas H, Domènech M, Laíz A, et al. Is thiopurine methyltransferase genetic polymorphism a major factor for withdrawal of azathioprine in rheumatoid arthritis patients? Rheumatology (Oxford). 2003;42:40–5.

    Article  CAS  Google Scholar 

  • Ellinger-Ziegelbauer H, Gmuender H, Bandenburg A, et al. Prediction of a carcinogenic potential of rat hepatocarcinogens using toxicogenomics analysis of short-term in vivo studies. Mutat Res. 2008;637:23–39.

    Article  CAS  PubMed  Google Scholar 

  • Ellinger-Ziegelbauer H, Fostel JM, Aruga C, et al. Characterization and interlaboratory comparison of a gene expression signature for differentiating genotoxic mechanisms. Toxicol Sci. 2009;110:341–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fielden MR, Brennan R, Gollub J. A gene expression biomarker provides early prediction and mechanistic assessment of hepatic tumor induction by nongenotoxic chemicals. Toxicol Sci. 2007;99:90–100.

    Article  CAS  PubMed  Google Scholar 

  • Fielden MR, Nie A, McMillian M, et al. Interlaboratory evaluation of genomic signatures for predicting carcinogenicity in the rat. Toxicol Sci. 2008;103:28–34.

    Article  CAS  PubMed  Google Scholar 

  • Frueh FW, Amur S, Mummaneni P, et al. Pharmacogenomic biomarker information in drug labels approved by the United States food and drug administration: prevalence of related drug use. Pharmacotherapy. 2008;28:992–8.

    Article  PubMed  Google Scholar 

  • Gant TW, Baus PR, Clothier B, et al. Gene expression profiles associated with inflammation, fibrosis, and cholestasis in mouse liver after griseofulvin. EHP Toxicogenomics. 2003;111:37–43.

    CAS  PubMed  Google Scholar 

  • Ganter B, Tugendreich S, Pearson CI, et al. Development of a large-scale chemogenomics database to improve drug candidate selection and to understand mechanisms of chemical toxicity and action. J Biotechnol. 2005;119:219–44.

    Article  CAS  PubMed  Google Scholar 

  • Gao W, Mizukawa Y, Nakatsu N, et al. Mechanism-based biomarker gene sets for glutathione depletion-related hepatotoxicity in rats. Toxicol Appl Pharmacol. 2010;247:211–21.

    Article  CAS  PubMed  Google Scholar 

  • Hicks JK, Swen JJ, Thorn CF, et al. Clinical pharmacogenetics implementation consortium guideline for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants. Clin Pharmacol Ther. 2013;93:402–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirode M, Ono A, Miyagishima T, et al. Gene expression profiling in rat liver treated with compounds inducing phospholipidosis. Toxicol Appl Pharmacol. 2008;229:290–9.

    Article  CAS  PubMed  Google Scholar 

  • Hirode M, Horinouchi A, Uehara T, et al. Gene expression profiling in rat liver treated with compounds inducing elevation of bilirubin. Hum Exp Toxicol. 2009a;28:231–44.

    Article  CAS  PubMed  Google Scholar 

  • Hirode M, Omura K, Kiyosawa N, et al. Gene expression profiling in rat liver treated with various hepatotoxic-compounds inducing coagulopathy. J Toxicol Sci. 2009b;34:281–93.

    Article  CAS  PubMed  Google Scholar 

  • Hoskins JM, Carey LA, McLeod HL. CYP2D6 and tamoxifen: DNA matters in breast cancer. Nat Rev Cancer. 2009;9:576–86.

    Article  CAS  PubMed  Google Scholar 

  • Johansson I, Ingelman-Sundberg M. Genetic polymorphism and toxicology–with emphasis on cytochrome p450. Toxicol Sci. 2011;120:1–13.

    Article  CAS  PubMed  Google Scholar 

  • Katsnelson A. Momentum grows to make ‘personalized’ medicine more ‘precise’. Nat Med. 2013;19:249.

    Article  CAS  PubMed  Google Scholar 

  • Kienhuis AS, Vitins AP, Pennings JL, et al. Cyclosporine A treated in vitro models induce cholestasis response through comparison of phenotype-directed gene expression analysis of in vivo Cyclosporine A-induced cholestasis. Toxicol Lett. 2013;221:225–36.

    Article  CAS  PubMed  Google Scholar 

  • Kiyosawa N, Watanabe T, Sakuma K, et al. Phylogenetic tree facilitates the understanding of gene expression data on drug metabolizing enzymes obtained by microarray analysis. Toxicol Lett. 2003;145:281–9.

    Article  CAS  PubMed  Google Scholar 

  • Kiyosawa N, Uehara T, Gao W, et al. Identification of glutathione depletion-responsive genes using phorone-treated rat liver. J Toxicol Sci. 2007;32:469–86.

    Article  CAS  PubMed  Google Scholar 

  • Kondo C, Minowa Y, Uehara T, et al. Identification of genomic biomarkers for concurrent diagnosis of drug-induced renal tubular injury using a large-scale toxicogenomics database. Toxicology. 2009;265:15–26.

    Article  CAS  PubMed  Google Scholar 

  • Kondo C, Aoki M, Yamamoto E, et al. Predictive genomic biomarkers for drug-induced nephrotoxicity in mice. J Toxicol Sci. 2012;37:723–37.

    Article  CAS  PubMed  Google Scholar 

  • Kramer JA, Curtiss SW, Kolaja KL, et al. Acute molecular markers of rodent hepatic carcinogenesis identified by transcription profiling. Chem Res Toxicol. 2004;17:463–70.

    Article  CAS  PubMed  Google Scholar 

  • Kwon SB, Park JS, Yi JY, et al. Time- and dose-based gene expression profiles produced by a bile-duct-damaging chemical, 4,4′-methylene dianiline, in mouse liver in an acute phase. Toxicol Pathol. 2008;36:660–73.

    Article  CAS  PubMed  Google Scholar 

  • Lee MH, Hong I, Kim M, et al. Gene expression profiles of murine fatty liver induced by the administration of methotrexate. Toxicology. 2008;249:75–84.

    Article  CAS  PubMed  Google Scholar 

  • Lim JS, Jeong SY, Hwang JY, et al. Effects of phalloidin on hepatic gene expression in mice. Int J Toxicol. 2007;26:213–20.

    Article  CAS  PubMed  Google Scholar 

  • Low Y, Uehara T, Minowa Y, et al. Predicting drug-induced hepatotoxicity using QSAR and toxicogenomics approaches. Chem Res Toxicol. 2011;24:1251–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magkoufopoulou C, Claessen SM, Tsamou M, et al. A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012;33:1421–9.

    Article  CAS  PubMed  Google Scholar 

  • Minowa Y, Kondo C, Uehara T, et al. Toxicogenomic multigene biomarker for predicting the future onset of proximal tubular injury in rats. Toxicology. 2012;297:47–56.

    Article  CAS  PubMed  Google Scholar 

  • Mori Y, Kondo C, Tonomura Y, et al. Identification of potential genomic biomarkers for early detection of chemically induced cardiotoxicity in rats. Toxicology. 2010;271:36–44.

    Article  CAS  PubMed  Google Scholar 

  • Nakayama K, Kawano Y, Kawakami Y, et al. Differences in gene expression profiles in the liver between carcinogenic and non-carcinogenic isomers of compounds given to rats in a 28-day repeat-dose toxicity study. Toxicol Appl Pharmacol. 2006;217:299–307.

    Article  CAS  PubMed  Google Scholar 

  • Nie AY, McMillian M, Parker JB, et al. Predictive toxicogenomics approaches reveal underlying molecular mechanisms of nongenotoxic carcinogenicity. Mol Carcinog. 2006;45:914–33.

    Article  CAS  PubMed  Google Scholar 

  • Nishimura Y, Morikawa Y, Kondo C, et al. Genomic biomarkers for cardiotoxicity in rats as a sensitive tool in preclinical studies. J Appl Toxicol. 2013;33:1120–30.

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuki S, Schaefer O, Kawakami H, et al. Simultaneous absolute protein quantification of transporters, cytochromes P450, and UDP-glucuronosyltransferases as a novel approach for the characterization of individual human liver: comparison with mRNA levels and activities. Drug Metab Dispos. 2012;40:83–92.

    Article  CAS  PubMed  Google Scholar 

  • Omura K, Kiyosawa N, Uehara T, et al. Gene expression profiling of rat liver treated with serum triglyceride-decreasing compounds. J Toxicol Sci. 2007;32:387–99.

    Article  CAS  PubMed  Google Scholar 

  • Ong FS, Das K, Wang J, et al. Personalized medicine and pharmacogenetic biomarkers: progress in molecular oncology testing. Expert Rev Mol Diagn. 2012;12:593–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ovando BJ, Ellison CA, Vezina CM, et al. Toxicogenomic analysis of exposure to TCDD, PCB126 and PCB153: identification of genomic biomarkers of exposure to AhR ligands. BMC Genomics. 2010;11:583.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rokushima M, Omi K, Imura K, et al. Toxicogenomics of drug-induced hemolytic anemia by analyzing gene expression profiles in the spleen. Toxicol Sci. 2007;100:290–302.

    Article  CAS  PubMed  Google Scholar 

  • Samer CF, Lorenzini KI, Rollason V, et al. Applications of CYP450 testing in the clinical setting. Mol Diagn Ther. 2013;17:165–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawada H, Takami K, Asahi S. A toxicogenomic approach to drug-induced phospholipidosis: analysis of its induction mechanism and establishment of a novel in vitro screening system. Toxicol Sci. 2005;83:282–92.

    Article  CAS  PubMed  Google Scholar 

  • Shao J, Katika MR, Schmeits PC, et al. Toxicogenomics-based identification of mechanisms for direct immunotoxicity. Toxicol Sci. 2013; 135:328–346.

    Google Scholar 

  • Sim SC, Ingelman-Sundberg M. Pharmacogenomic biomarkers: new tools in current and future drug therapy. Trends Pharmacol Sci. 2011;32:72–81.

    Article  CAS  PubMed  Google Scholar 

  • Sugihara T, Koda M, Matono T, et al. Extracellular matrix metabolism-related gene expression in bile duct-ligated rats. Mol Med Rep. 2009;2:345–51.

    CAS  PubMed  Google Scholar 

  • Tamura K, Ono A, Miyagishima T, et al. Profiling of gene expression in rat liver and rat primary cultured hepatocytes treated with peroxisome proliferators. J Toxicol Sci. 2006;31:471–90.

    Article  CAS  PubMed  Google Scholar 

  • Tong W, Cao X, Harris S, et al. ArrayTrack–supporting toxicogenomic research at the U.S. Food and Drug Administration National Center for Toxicological Research. Environ Health Perspect. 2003;111:1819–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uehara T, Miyoshi T, Tsuchiya N, et al. Comparative analysis of gene expression between renal cortex and papilla in nedaplatin-induced nephrotoxicity in rats. Hum Exp Toxicol. 2007;26:767–80.

    Article  CAS  PubMed  Google Scholar 

  • Uehara T, Hirode M, Ono A, et al. A toxicogenomics approach for early assessment of potential non-genotoxic hepatocarcinogenicity of chemicals in rats. Toxicology. 2008;250:15–26.

    Article  CAS  PubMed  Google Scholar 

  • Uehara T, Ono A, Maruyama T, et al. The Japanese toxicogenomics project: application of toxicogenomics. Mol Nutr Food Res. 2010;54:218–27.

    Article  CAS  PubMed  Google Scholar 

  • Uehara T, Kondo C, Yamate J, et al. A toxicogenomic approach for identifying biomarkers for myelosup- pressive anemia in rats. Toxicology. 2011a;282:139–45.

    Google Scholar 

  • Uehara T, Minowa Y, Morikawa Y, et al. Prediction model of potential hepatocarcinogenicity of rat hepatocarcinogens using a large-scale toxicogenomics database. Toxicol Appl Pharmacol. 2011b;255:297–306.

    Article  CAS  PubMed  Google Scholar 

  • Uehara T, Kondo C, Morikawa Y, et al. Toxicogenomic biomarkers for renal papillary injury in rats. Toxicology. 2013;303:1–8.

    Article  CAS  PubMed  Google Scholar 

  • Ujiie S, Sasaki T, Mizugaki M, et al. Functional characterization of 23 allelic variants of thiopurine S-methyltransferase gene (TPMT*2 - *24). Pharmacogenet Genomics. 2008;18:887–93.

    Article  CAS  PubMed  Google Scholar 

  • van Dartel DA, Pennings JL, de la Fonteyne LJ, et al. Evaluation of developmental toxicant identification using gene expression profiling in embryonic stem cell differentiation cultures. Toxicol Sci. 2011;119:126–34.

    Article  PubMed  Google Scholar 

  • Wang EJ, Snyder RD, Fielden MR, et al. Validation of putative genomic biomarkers of nephrotoxicity in rats. Toxicology. 2008;246:91–100.

    Article  CAS  PubMed  Google Scholar 

  • Waters M, Boorman G, Bushel P, et al. Systems toxicology and the Chemical Effects in Biological Systems (CEBS) knowledge base. EHP Toxicogenomics. 2003;111:15–28.

    CAS  PubMed  Google Scholar 

  • Yamada F, Sumida K, Uehara T, et al. Toxicogenomics discrimination of potential hepatocarcinogenicity of non-genotoxic compounds in rat liver. J Appl Toxicol. 2012; 13. doi: 10.1002/jat.2790.

    Google Scholar 

  • Yudate HT, Kai T, Aoki M, et al. Identification of a novel set of biomarkers for evaluating phospholipidosis-inducing potential of compounds using rat liver microarray data measured 24-h after single dose administration. Toxicology. 2012;295:1–7.

    Article  CAS  PubMed  Google Scholar 

  • Ziegler A, Koch A, Krockenberger K, et al. Personalized medicine using DNA biomarkers: a review. Hum Genet. 2012;131:1627–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuckerman R, Milne CP. Market watch: industry perspectives on personalized medicine. Nat Rev Drug Discov. 2012;11:178.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeki Uehara .

Editor information

Editors and Affiliations

Additional information

Disclaimer

The opinions expressed in this chapter do not reflect the official positions or policies of the US Food and Drug Administration.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Uehara, T., Wang, Y., Tong, W. (2015). Toxicogenomic and Pharmacogenomic Biomarkers for Drug Discovery and Personalized Medicine. In: Preedy, V., Patel, V. (eds) General Methods in Biomarker Research and their Applications. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7696-8_19

Download citation

Publish with us

Policies and ethics