Skip to main content

Biomarkers in Chronic Obstructive Pulmonary Disease (COPD): Current Concerns and Future Prospects

  • Reference work entry
  • First Online:
General Methods in Biomarker Research and their Applications

Abstract

Chronic obstructive pulmonary disease (COPD) is a heterogeneous syndrome that encompasses a variety of obstructive diseases that differ in terms of the mechanisms and the response to therapy. Accordingly, it seems crucial to identify the distinct disease phenotypes within the range of this syndrome. In recent years there has been a growing interest in the field of biomarkers in COPD. Biomarkers may be local (i.e., measured in induced sputum or exhaled air) or systemic (i.e., measured in serum, plasma, or urine). Several studies are now available on exhaled biomarkers, but data with possible clinical implications are limited, in contrast to the widely used biomarkers of eosinophilic inflammation in asthma. Intense research has evaluated the possible role of systemic biomarkers in the assessment and management of patients with COPD. Data from large cohorts, including the ECLIPSE study, provide information on the association of biomarkers with clinically important parameters, including functional assessments, exacerbations, and mortality. This chapter provides a comprehensive summary of current evidence on exhaled and systemic biomarkers in COPD. The ideal approach is not to measure any single biomarker in order to detect elevated or decreased levels but to try to identify the particular phenotype that is related to the specific biomarker and the underlying mechanism. Most likely a single biomarker is not sufficient, and the combination of more than one may approach more effectively the recognition of the phenotype. The understanding of the pathophysiology of this world epidemic disease is essential to improve the management of these patients as well as to evaluate the plausible effects of new treatment regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ang-2:

Angiopoietin 2

BNP:

B-type Natriuretic Peptide

CC-16:

Clara Cell Secretory Protein 16

CCL-18:

Chemokine Ligand 18

COPD:

Chronic Obstructive Pulmonary Disease

CRP:

C-reactive Protein

CT:

Computed Tomography

CXCL10:

Chemokine (C-X-C Motif) Ligand 10

DCC:

Differential Cell Count

DLco:

Diffusing Capacity of the Lung for Carbon Monoxide

DTT:

Dithiothreitol

EBC:

Exhaled Breath Condensate

ELISA:

Enzyme Immunoassay

eNOS:

Endothelial NOS

e-nose:

Electronic Nose

ERS:

European Respiratory Society

FeNO:

Fraction of Exhaled Nitric Oxide

FEV1 :

Forced Expiratory Volume in 1 s

FVC:

Forced Vital Capacity PIO KATW

GOLD:

Global Initiative for Obstructive Lung Disease

H2O2 :

Hydrogen Peroxide

ICS:

Inhaled Corticosteroids

ICU:

Intensive Care Unit

IL:

Interleukin

IL-18:

Interleukin 18

IL-1β:

Interleukin 1β

IL-5:

Interleukin 5

IL-6:

Interleukin 6

IL-8:

Interleukin 8

iNOS:

Inducible NOS

LABA:

Long-Acting Β2-Agonists

LTB4 :

Leukotriene B4

MDA:

Malondialdehyde

MMP-12:

Matrix Metalloproteinase 12

MMP-8:

Matrix Metalloproteinase 8

MMP-9:

Matrix Metalloproteinase 9

MPO:

Myeloperoxidase

MR-proANP:

Midregional Proatrial Natriuretic Peptide

nNOS:

Neuronal NOS

NO:

Nitric Oxide

NOS:

NO Synthase

NT-proBNP:

N-terminal Pro-brain Natriuretic Peptide

PaO2 :

Partial Pressure of Oxygen

PBS:

Phosphate-Buffered Saline

PCT:

Procalcitonin

PGE2 :

Prostaglandin E2

RS-NOs:

Nitrosothiols

SAA:

Serum Amyloid A

SLPI:

Secretory Leukocyte Protease Inhibitor

SP-D:

Surfactant Protein D

TCC:

Total Cell Count

TLC:

Total Lung Capacity

TNF-α:

Tumor Necrosis Factor-Alpha

VEGF:

Vascular Endothelial Growth Factor

VOCs:

Volatile Organic Compounds

References

  • Aaron SD, Vandemheen KL, Ramsay T, et al. Multi analyte profiling and variability of inflammatory markers in blood and induced sputum in patients with stable COPD. Respir Res. 2010;11:41.

    Article  PubMed  PubMed Central  Google Scholar 

  • Agusti A, Edwards LD, Rennard SI, et al. Persistent systemic inflammation is associated with poor clinical outcomes in COPD: a novel phenotype. PLoS One. 2012;7:e37483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antus B, Barta I, Kullmann T, et al. Assessment of exhaled breath condensate pH in exacerbations of asthma and chronic obstructive pulmonary disease: a longitudinal study. Am J Respir Crit Care Med. 2010;182:1492–7.

    Article  PubMed  Google Scholar 

  • Bafadhel M, Mckenna S, Terry S, et al. Acute exacerbations of chronic obstructive pulmonary disease: identification of biologic clusters and their biomarkers. Am J Respir Crit Care Med. 2011;184:662–71.

    Article  PubMed  Google Scholar 

  • Bafadhel M, Mckenna S, Terry S, et al. Blood eosinophils to direct corticosteroid treatment of exacerbations of chronic obstructive pulmonary disease: a randomized placebo-controlled trial. Am J Respir Crit Care Med. 2012;186:48–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnes PJ, Dweik RA, Gelb AF, et al. Exhaled nitric oxide in pulmonary diseases: a comprehensive review. Chest. 2010;138:682–92.

    Article  CAS  PubMed  Google Scholar 

  • Bartoli ML, Novelli F, Costa F, et al. Malondialdehyde in exhaled breath condensate as a marker of oxidative stress in different pulmonary diseases. Mediators Inflamm. 2011;2011:891752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartziokas K, Papaioannou AI, Loukides S, et al. Serum uric acid on COPD exacerbation as predictor of mortality and future exacerbations. Eur Respir J. 2014;43:43–53.

    Google Scholar 

  • Bazeghi N, Gerds TA, Budtz-Jorgensen E, et al. Exhaled nitric oxide measure using multiple flows in clinically relevant subgroups of COPD. Respir Med. 2011;105:1338–44.

    Article  PubMed  Google Scholar 

  • Beeh KM, Beier J, Kornmann O, et al. Sputum matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, and their molar ratio in patients with chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis and healthy subjects. Respir Med. 2003;97:634–9.

    Article  CAS  PubMed  Google Scholar 

  • Bernasconi M, Tamm M, Bingisser R, et al. Midregional proatrial natriuretic peptide predicts survival in exacerbations of COPD. Chest. 2011;140:91–9.

    Article  CAS  PubMed  Google Scholar 

  • Bessa V, Loukides S, Hillas G, et al. Levels of angiopoietins 1 and 2 in induced sputum supernatant in patients with COPD. Cytokine. 2012;58:455–60.

    Article  CAS  PubMed  Google Scholar 

  • Bhowmik A, Seemungal TA, Sapsford RJ, et al. Comparison of spontaneous and induced sputum for investigation of airway inflammation in chronic obstructive pulmonary disease. Thorax. 1998;53:953–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bozinovski S, Hutchinson A, Thompson M, et al. Serum amyloid a is a biomarker of acute exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;177:269–78.

    Article  CAS  PubMed  Google Scholar 

  • Brightling CE, Monteiro W, Ward R, et al. Sputum eosinophilia and short-term response to prednisolone in chronic obstructive pulmonary disease: a randomised controlled trial. Lancet. 2000;356:1480–5.

    Article  CAS  PubMed  Google Scholar 

  • Brightling CE, Mckenna S, Hargadon B, et al. Sputum eosinophilia and the short term response to inhaled mometasone in chronic obstructive pulmonary disease. Thorax. 2005;60:193–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cazzola M, Macnee W, Martinez FJ, et al. Outcomes for COPD pharmacological trials: from lung function to biomarkers. Eur Respir J. 2008;31:416–69.

    Article  CAS  PubMed  Google Scholar 

  • Celli BR, Locantore N, Yates J, et al. Inflammatory biomarkers improve clinical prediction of mortality in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;185:1065–72.

    Article  CAS  PubMed  Google Scholar 

  • Chang CL, Robinson SC, Mills GD, et al. Biochemical markers of cardiac dysfunction predict mortality in acute exacerbations of COPD. Thorax. 2011;66:764–8.

    Article  PubMed  Google Scholar 

  • Chaudhuri R, Mcsharry C, Brady J, et al. Sputum matrix metalloproteinase-12 in patients with chronic obstructive pulmonary disease and asthma: relationship to disease severity. J Allergy Clin Immunol. 2012;129:655–63 e658.

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Wang Y, Bai C, et al. Alterations of plasma inflammatory biomarkers in the healthy and chronic obstructive pulmonary disease patients with or without acute exacerbation. J Proteomics. 2012;75:2835–43.

    Article  CAS  PubMed  Google Scholar 

  • Confalonieri M, Mainardi E, Della Porta R, et al. Inhaled corticosteroids reduce neutrophilic bronchial inflammation in patients with chronic obstructive pulmonary disease. Thorax. 1998;53:583–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cristescu SM, Mandon J, Harren FJ, et al. Methods of NO detection in exhaled breath. J Breath Res. 2013;7:017104.

    Article  CAS  PubMed  Google Scholar 

  • Culpitt SV, Maziak W, Loukidis S, et al. Effect of high dose inhaled steroid on cells, cytokines, and proteases in induced sputum in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999;160:1635–9.

    Article  CAS  PubMed  Google Scholar 

  • Dahl M, Tybjaerg-Hansen A, Vestbo J, et al. Elevated plasma fibrinogen associated with reduced pulmonary function and increased risk of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;164:1008–11.

    Article  CAS  PubMed  Google Scholar 

  • Dahl M, Vestbo J, Lange P, et al. C-reactive protein as a predictor of prognosis in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;175:250–5.

    Article  CAS  PubMed  Google Scholar 

  • Daniels JM, Schoorl M, Snijders D, et al. Procalcitonin vs C-reactive protein as predictive markers of response to antibiotic therapy in acute exacerbations of COPD. Chest. 2010;138:1108–15.

    Article  CAS  PubMed  Google Scholar 

  • De Torres JP, Pinto-Plata V, Casanova C, et al. C-reactive protein levels and survival in patients with moderate to very severe COPD. Chest. 2008;133:1336–43.

    Article  PubMed  Google Scholar 

  • Dentener MA, Vernooy JH, Hendriks S, et al. Enhanced levels of hyaluronan in lungs of patients with COPD: relationship with lung function and local inflammation. Thorax. 2005;60:114–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donaldson GC, Seemungal TA, Patel IS, et al. Airway and systemic inflammation and decline in lung function in patients with COPD. Chest. 2005;128:1995–2004.

    Article  PubMed  Google Scholar 

  • Dweik RA, Boggs PB, Erzurum SC, et al. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am J Respir Crit Care Med. 2011;184:602–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Efthimiadis A, Spanevello A, Hamid Q, et al. Methods of sputum processing for cell counts, immunocytochemistry and in situ hybridisation. Eur Respir J Suppl. 2002;37:19s–23.

    CAS  PubMed  Google Scholar 

  • Erin EM, Jenkins GR, Kon OM, et al. Optimized dialysis and protease inhibition of sputum dithiothreitol supernatants. Am J Respir Crit Care Med. 2008;177:132–41.

    Article  CAS  PubMed  Google Scholar 

  • Esther Jr CR, Lazaar AL, Bordonali E, et al. Elevated airway purines in COPD. Chest. 2011;140:954–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fritscher LG, Post M, Rodrigues MT, et al. Profile of eicosanoids in breath condensate in asthma and COPD. J Breath Res. 2012;6:026001.

    Article  PubMed  Google Scholar 

  • Fujimoto K, Kubo K, Yamamoto H, et al. Eosinophilic inflammation in the airway is related to glucocorticoid reversibility in patients with pulmonary emphysema. Chest. 1999;115:697–702.

    Article  CAS  PubMed  Google Scholar 

  • Gan WQ, Man SF, Senthilselvan A, et al. Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis. Thorax. 2004;59:574–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao P, Zhang J, He X, et al. Sputum inflammatory cell-based classification of patients with acute exacerbation of chronic obstructive pulmonary disease. PLoS One. 2013;8:e57678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hattesohl AD, Jorres RA, Dressel H, et al. Discrimination between COPD patients with and without alpha 1-antitrypsin deficiency using an electronic nose. Respirology. 2011;16:1258–64.

    Article  PubMed  Google Scholar 

  • Hillas G, Loukides S, Kostikas K, et al. Biomarkers obtained by non-invasive methods in patients with COPD: where do we stand, what do we expect? Curr Med Chem. 2009;16:2824–38.

    Article  CAS  PubMed  Google Scholar 

  • Hogman M. Extended NO, analysis in health and disease. J Breath Res. 2012;6:047103.

    Article  PubMed  Google Scholar 

  • Horvath I, Hunt J, Barnes PJ, et al. Exhaled breath condensate: methodological recommendations and unresolved questions. Eur Respir J. 2005;26:523–48.

    Article  CAS  PubMed  Google Scholar 

  • Hurst JR, Donaldson GC, Perera WR, et al. Use of plasma biomarkers at exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2006;174:867–74.

    Article  CAS  PubMed  Google Scholar 

  • Kanazawa H. Role of vascular endothelial growth factor in the pathogenesis of chronic obstructive pulmonary disease. Med Sci Monit. 2007;13:RA189–95.

    CAS  PubMed  Google Scholar 

  • Keatings VM, Collins PD, Scott DM, et al. Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am J Respir Crit Care Med. 1996;153:530–4.

    Article  CAS  PubMed  Google Scholar 

  • Kharitonov SA, Barnes PJ. Exhaled biomarkers. Chest. 2006;130:1541–6.

    Article  PubMed  Google Scholar 

  • Kostikas K, Papatheodorou G, Ganas K, et al. pH in expired breath condensate of patients with inflammatory airway diseases. Am J Respir Crit Care Med. 2002;165:1364–70.

    Article  PubMed  Google Scholar 

  • Kostikas K, Papatheodorou G, Psathakis K, et al. Oxidative stress in expired breath condensate of patients with COPD. Chest. 2003;124:1373–80.

    Article  CAS  PubMed  Google Scholar 

  • Kostikas K, Gaga M, Papatheodorou G, et al. Leukotriene B4 in exhaled breath condensate and sputum supernatant in patients with COPD and asthma. Chest. 2005;127:1553–9.

    Article  CAS  PubMed  Google Scholar 

  • Kostikas K, Minas M, Papaioannou AI, et al. Exhaled nitric oxide in asthma in adults: the end is the beginning? Curr Med Chem. 2011;18:1423–31.

    Article  CAS  PubMed  Google Scholar 

  • Kostikas K, Bakakos P, Papiris S, et al. Systemic biomarkers in the evaluation and management of COPD patients: are we getting closer to clinical application? Curr Drug Targets. 2013;14:177–91.

    Article  CAS  PubMed  Google Scholar 

  • Koutsokera A, Kiropoulos TS, Nikoulis DJ, et al. Clinical, functional and biochemical changes during recovery from COPD exacerbations. Respir Med. 2009;103:919–26.

    Article  PubMed  Google Scholar 

  • Koutsokera A, Stolz D, Loukides S, et al. Systemic biomarkers in exacerbations of COPD: the evolving clinical challenge. Chest. 2012;141:396–405.

    Article  PubMed  Google Scholar 

  • Krommidas G, Kostikas K, Papatheodorou G, et al. Plasma leptin and adiponectin in COPD exacerbations: associations with inflammatory biomarkers. Respir Med. 2010;104:40–6.

    Article  PubMed  Google Scholar 

  • Lee W, Thomas PS. Oxidative stress in COPD and its measurement through exhaled breath condensate. Clin Transl Sci. 2009;2:150–5.

    Article  CAS  PubMed  Google Scholar 

  • Lomas DA, Silverman EK, Edwards LD, et al. Evaluation of serum CC-16 as a biomarker for COPD in the ECLIPSE cohort. Thorax. 2008;63:1058–63.

    Article  CAS  PubMed  Google Scholar 

  • Lomas DA, Silverman EK, Edwards LD, et al. Serum surfactant protein D is steroid sensitive and associated with exacerbations of COPD. Eur Respir J. 2009;34:95–102.

    Article  CAS  PubMed  Google Scholar 

  • Macnee W, Rennard SI, Hunt JF, et al. Evaluation of exhaled breath condensate pH as a biomarker for COPD. Respir Med. 2011;105:1037–45.

    Article  PubMed  Google Scholar 

  • Man SF, Xing L, Connett JE, et al. Circulating fibronectin to C-reactive protein ratio and mortality: a biomarker in COPD? Eur Respir J. 2008;32:1451–7.

    Article  CAS  PubMed  Google Scholar 

  • Minas M, Kostikas K, Papaioannou AI, et al. The association of metabolic syndrome with adipose tissue hormones and insulin resistance in patients with COPD without co-morbidities. COPD. 2011;8:414–20.

    Article  PubMed  Google Scholar 

  • Minas M, Mystridou P, Georgoulias P, et al. Fetuin-A is associated with disease severity and exacerbation frequency in patients with COPD. COPD. 2013;10:28–34.

    Article  PubMed  Google Scholar 

  • Montuschi P. Chronic obstructive pulmonary disease phenotyping: a possible role for 8-isoprostane measurement in exhaled breath condensate? Respiration. 2008;75:134–5.

    Article  PubMed  Google Scholar 

  • Papaioannou AI, Loukides S, Minas M, et al. Exhaled breath condensate pH as a biomarker of COPD severity in ex-smokers. Respir Res. 2011;12:67.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pizzichini MM, Popov TA, Efthimiadis A, et al. Spontaneous and induced sputum to measure indices of airway inflammation in asthma. Am J Respir Crit Care Med. 1996;154:866–9.

    Article  CAS  PubMed  Google Scholar 

  • Pizzichini E, Pizzichini MM, Leigh R, et al. Safety of sputum induction. Eur Respir J Suppl. 2002;37:9s–18.

    CAS  PubMed  Google Scholar 

  • Qiu W, Baccarelli A, Carey VJ, et al. Variable DNA methylation is associated with chronic obstructive pulmonary disease and lung function. Am J Respir Crit Care Med. 2012;185:373–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricciardolo FL, Sterk PJ, Gaston B, et al. Nitric oxide in health and disease of the respiratory system. Physiol Rev. 2004;84:731–65.

    Article  CAS  PubMed  Google Scholar 

  • Rosias P. Methodological aspects of exhaled breath condensate collection and analysis. J Breath Res. 2012;6:027102.

    Article  PubMed  Google Scholar 

  • Rovina N, Dima E, Gerassimou C, et al. Interleukin-18 in induced sputum: association with lung function in chronic obstructive pulmonary disease. Respir Med. 2009;103:1056–62.

    Article  PubMed  Google Scholar 

  • Sin DD, Man SF. Why are patients with chronic obstructive pulmonary disease at increased risk of cardiovascular diseases? The potential role of systemic inflammation in chronic obstructive pulmonary disease. Circulation. 2003;107:1514–9.

    Article  PubMed  Google Scholar 

  • Sin DD, Vestbo J. Biomarkers in chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2009;6:543–5.

    Article  CAS  PubMed  Google Scholar 

  • Sin DD, Man SF, Marciniuk DD, et al. The effects of fluticasone with or without salmeterol on systemic biomarkers of inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;177:1207–14.

    Article  CAS  PubMed  Google Scholar 

  • Sin DD, Miller BE, Duvoix A, et al. Serum PARC/CCL-18 concentrations and health outcomes in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2011;183:1187–92.

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh D, Edwards L, Tal-Singer R, et al. Sputum neutrophils as a biomarker in COPD: findings from the ECLIPSE study. Respir Res. 2010;11:77.

    Article  PubMed  PubMed Central  Google Scholar 

  • Siva R, Green RH, Brightling CE, et al. Eosinophilic airway inflammation and exacerbations of COPD: a randomised controlled trial. Eur Respir J. 2007;29:906–13.

    Article  CAS  PubMed  Google Scholar 

  • Stanescu D, Sanna A, Veriter C, et al. Airways obstruction, chronic expectoration, and rapid decline of FEV1 in smokers are associated with increased levels of sputum neutrophils. Thorax. 1996;51:267–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stolz D, Christ-Crain M, Bingisser R, et al. Antibiotic treatment of exacerbations of COPD: a randomized, controlled trial comparing procalcitonin-guidance with standard therapy. Chest. 2007a;131:9–19.

    Article  CAS  PubMed  Google Scholar 

  • Stolz D, Christ-Crain M, Morgenthaler NG, et al. Copeptin, C-reactive protein, and procalcitonin as prognostic biomarkers in acute exacerbation of COPD. Chest. 2007b;131:1058–67.

    Article  CAS  PubMed  Google Scholar 

  • Stolz D, Christ-Crain M, Morgenthaler NG, et al. Plasma pro-adrenomedullin but not plasma pro-endothelin predicts survival in exacerbations of COPD. Chest. 2008;134:263–72.

    Article  CAS  PubMed  Google Scholar 

  • Stolz D, Kostikas K, Blasi F, et al. Adrenomedullin refines mortality prediction by the BODE index in COPD – the “BODE-A” index. Eur Respir J. 2014;43:397–408

    Google Scholar 

  • Stone H, Mcnab G, Wood AM, et al. Variability of sputum inflammatory mediators in COPD and alpha1-antitrypsin deficiency. Eur Respir J. 2012;40:561–9.

    Article  CAS  PubMed  Google Scholar 

  • Vernooy JH, Kucukaycan M, Jacobs JA, et al. Local and systemic inflammation in patients with chronic obstructive pulmonary disease: soluble tumor necrosis factor receptors are increased in sputum. Am J Respir Crit Care Med. 2002;166:1218–24.

    Article  PubMed  Google Scholar 

  • Vestbo J, Edwards LD, Scanlon PD, et al. Changes in forced expiratory volume in 1 second over time in COPD. N Engl J Med. 2011;365:1184–92.

    Article  CAS  PubMed  Google Scholar 

  • Vestbo J, Hurd SS, Agusti AG, et al. Global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease, GOLD executive summary. Am J Respir Crit Care Med. 2013;187:347–65.

    Google Scholar 

  • Watz H, Waschki B, Kirsten A, et al. The metabolic syndrome in patients with chronic bronchitis and COPD frequency and associated consequences for systemic inflammation and physical inactivity. Chest. 2009;136:1039–46.

    Article  CAS  PubMed  Google Scholar 

  • Wheelock CE, Goss VM, Balgoma D, et al. Application of ’omics technologies to biomarker discovery in inflammatory lung diseases. Eur Respir J. 2013;42:802–25

    Google Scholar 

  • Wouters EF. Local and systemic inflammation in chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2005;2:26–33.

    Article  CAS  PubMed  Google Scholar 

  • Yoon HI, Li Y, Man SF, et al. The complex relationship of serum adiponectin to COPD outcomes COPD and adiponectin. Chest. 2012;142:893–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Kostikas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Kostikas, K., Bakakos, P., Loukides, S. (2015). Biomarkers in Chronic Obstructive Pulmonary Disease (COPD): Current Concerns and Future Prospects. In: Preedy, V., Patel, V. (eds) General Methods in Biomarker Research and their Applications. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7696-8_15

Download citation

Publish with us

Policies and ethics