Advertisement

Adiponectin as Biomarker of Osteoporosis

  • Anna LubkowskaEmail author
  • Aleksandra Radecka
  • Jan Mieszkowski
Reference work entry
  • 838 Downloads
Part of the Biomarkers in Disease: Methods, Discoveries and Applications book series (BDMDA)

Abstract

Adiponectin is one of the adipose tissue hormones synthesized and released mainly by mature adipocytes of visceral white adipose tissue. So far, scientific studies have been focused on the effect of adiponectin on regulation of glucose and fatty acid metabolism and its connection to cardiovascular system diseases and diabetes mellitus as well as the occurrence of metabolic syndrome. The latest reports indicate that this hormone is expressed not only on hepatocytes, endothelial cells, skeletal muscles, and central nervous system but also on osteoblasts, as shown by the presence of its specific membrane receptors (AdipoR1 and AdipoR2). Based on many reference data, it seems that adiponectin may be a link connecting the metabolism of adipose tissue and bone tissue. Due to its connection to bone turnover markers, it is a potential marker of osteoporosis.

Keywords

Adiponectin AdipoR1 Adipo R2 Osteogenesis Osteoporosis 

List of Abbreviations

5′AMP

Activated protein kinase 5′

ACC

Acetyl-CoA carboxylase

Acrp30

Adipocyte complement related protein of 30 kDa

AdipoQ

Adiponectin, C1Q and collagen domain containing

AMPK

AMP-activated(-related) protein kinase

AN

Anorexia nervosa

apM1

Adipocyte most abundant gene transcript 1

BMD

Bone mineral density

BMI

Body mass index

BN

Bulimia nervosa

DHEA-S

Dehydroepiandrosterone sulfate

ERA

Early rheumatoid arthritis

FM

Fat mass

GBP

Gastric bypass surgery

GBP28

Gelatin-binding protein of 28 kDa

GDM

Gestational diabetes mellitus

GIGT

Gestational impaired glucose tolerance

GR

Glucocorticoid receptor

HMW

High molecular weight complex

IGF-1

Insulin-like growth factor 1

IGF-2

Insulin-like growth factor 2

IL-6

Interleukin 6

LAGB

Laparoscopic adjustable gastric band

LMW

Low molecular weight trimer-dimer

MAPK

Mitogen-activated protein kinase

MCP-1

Monocyte chemotactic protein

MMP-3, MMP-9

Matrix metalloproteinase 3 and 9

MMW

Middle molecular weight

MP

Metabolic phenotype

NOS2

Nitric oxide synthase 2

NTG

Normal glucose tolerance

OA

Osteoarthritis

OGL

Oral glucose load

OPG

Osteoprotegerin

PCOS

Polycystic ovary syndrome

PPAR

Peroxisome proliferator-activated receptor

PPAR-α

Peroxisome proliferator-activated receptor alpha

RA

Rheumatoid arthritis

RANK

Receptor activator of nuclear factor kappa-B

RANKL

Receptor activator of nuclear factor kappa-B ligand

RYGB

Roux-en-Y gastric bypass

SHBG

Sex hormone binding globulin

SREBP

Sterol regulatory element-binding protein

T1DM

Diabetes mellitus type 1

T2DM

Diabetes mellitus type 2

TAL

Total adiponectin level

TNF-α

Tumor necrosis factor alpha

UA

Undifferentiated arthritis

VBG

Vertical banded gastroplasty

References

  1. Aarden EM, Nijweide PJ, Burger EH. Function of osteocytes in bone. J Cell Biochem. 1994;55(3):287–99.PubMedCrossRefGoogle Scholar
  2. Ağbaht K, Gürlek A, Karakaya J, et al. Circulating adiponectin represents a biomarker of the association between adiposity and bone mineral density. Endocrine. 2009;35(3):371–9.PubMedCrossRefGoogle Scholar
  3. Al-Daghri NM, Al-Attas OS, Alokail MS, et al. Adiponectin gene polymorphisms (T45G and G276T), adiponectin levels and risk for metabolic diseases in an Arab population. Gene. 2012;493(1):142–7.PubMedCrossRefGoogle Scholar
  4. Alehagen U, Vorkapic E, Ljungberg L, et al. Gender difference in adiponectin associated with cardiovascular mortality. BMC Med Genet. 2015;16:37.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Araneta MR, von Mühlen D, Barrett-Connor E. Sex differences in the association between adiponectin and BMD, bone loss, and fractures: the Rancho Bernardo study. J Bone Miner Res. 2009;24(12):2016–22.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Arita Y, Kihara S, Ouchi N, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun. 1999;257(1):79–83.PubMedCrossRefGoogle Scholar
  7. Berner HS, Lyngstadaas SP, Spahr A, et al. Adiponectin and its receptors are expressed in bone-forming cells. Bone. 2004;35(4):842–9.PubMedCrossRefGoogle Scholar
  8. Blair HC, Zaidi M, Huang CL, et al. The developmental basis of skeletal cell differentiation and the molecular basis of major skeletal defects. Biol Rev Camb Philos Soc. 2008;83(4):401–15.PubMedGoogle Scholar
  9. Blair HC, Robinson LJ, Huang CL, et al. Calcium and bone disease. Biofactors. 2011;37(3):159–67.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bleuming SA, He XC, Kodach LL, et al. Bone morphogenetic protein signaling suppresses tumorigenesis at gastric epithelial transition zones in mice. Cancer Res. 2007;67(17):8149–55.PubMedCrossRefGoogle Scholar
  11. Bogan JS, Lodish HF. Two compartments for insulin-stimulated exocytosis in 3T3–L1 adipocytes defined by endogenous ACRP30 and GLUT4. J Cell Biol. 1999;146(3):609–20.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bonewald L. The amazing osteocyte. J Bone Miner Res. 2011;26(2):229–38.PubMedCrossRefGoogle Scholar
  13. Brun RP, Spiegelman BM. PPARg and the molecular control of adipogenesis. J Endocrinol. 1997;155(2):217–8.PubMedCrossRefGoogle Scholar
  14. Bruun JM, Lihn AS, Verdich C, et al. Regulation of adiponectin by adipose tissue-derived cytokines: in vivo and in vitro investigations in humans. Am J Physiol Endocrinol Metab. 2003;285(3):E527–33.PubMedCrossRefGoogle Scholar
  15. Carrasco F, Ruz M, Rojas P, et al. Changes in bone mineral density, body composition and adiponectin levels in morbidly obese patients after bariatric surgery. Obes Surg. 2009;19(1):41–6.PubMedCrossRefGoogle Scholar
  16. Carrasco F, Basfi-Fer K, Rojas P. Changes in bone mineral density after sleeve gastrectomy or gastric bypass: relationships with variations in vitamin D, ghrelin, and adiponectin levels. Obes Surg. 2014;24(6):877–84.PubMedCrossRefGoogle Scholar
  17. Ceddia RB, Somwar R, Maida A, et al. Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia. 2005;48(1):132–9.PubMedCrossRefGoogle Scholar
  18. Challa T, Rais Y, Ornan E, et al. Effect of adiponectin on ATDC5 proliferation, differentiation and signaling pathways. Mol Cell Endocrinol. 2010;323(2):282–91.PubMedCrossRefGoogle Scholar
  19. Clowes JA, Robinson RT, Heller SR, et al. Acute changes of bone turnover and PTH induced by insulin and glucose: euglycemic and hypoglycemic hyperinsulinemic clamp studies. J Clin Endocrinol Metab. 2002;87:3324–9.PubMedCrossRefGoogle Scholar
  20. Cnop M, Havel PJ, Utzschneider KM, et al. Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia. 2003;46(4):459–69.PubMedCrossRefGoogle Scholar
  21. Comuzzie AG, Funahashi T, Sonnenberg G, et al. The genetic basis of plasma variation in adiponectin, a global endophenotype for obesity and the metabolic syndrome. J Clin Endocrinol Metab. 2001;86(9):4321–5.PubMedCrossRefGoogle Scholar
  22. Cummings SR, Black D. Bone mass measurements and risk of fracture in Caucasian women: a review of findings from prospective studies. Am J Med. 1995;98(2A):24–8.CrossRefGoogle Scholar
  23. De Rosa A, Monaco ML, Capasso M, et al. Adiponectin oligomers as potential indicators of adipose tissue improvement in obese subjects. Eur J Endocrinol. 2013;169(1):37–43.PubMedCrossRefGoogle Scholar
  24. Decker GA, Swain JM, Crowell MD, Scolapio JS. Gastrointestinal and nutritional complications after bariatric surgery. Am J Gastroenterol. 2007;102:2571–80.PubMedCrossRefGoogle Scholar
  25. Delporte ML, Funahashi T, Takahashi M, et al. Pre- and post-translational negative effect of beta-adrenoceptor agonists on adiponectin secretion: in vitro and in vivo studies. Biochem J. 2002;367(Pt 3):677–85.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Fasshauer M, Klein J, Neumann S, et al. Adiponectin gene expression is inhibited by beta-adrenergic stimulation via protein kinase A in 3T3-L1 adipocytes. FEBS Lett. 2001;507(2):142–6.PubMedCrossRefGoogle Scholar
  27. Fasshauer M, Klein J, Neumann S, et al. Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2002;290(3):1084–9.PubMedCrossRefGoogle Scholar
  28. Fasshauer M, Kralisch S, Klier M, et al. Adiponectin gene expression and secretion is inhibited by interleukin-6 in 3T3–L1 adipocytes. Biochem Biophys Res Commun. 2003;301(4):1045–50.PubMedCrossRefGoogle Scholar
  29. Frommer K, Zimmermann B, Schröder D, et al. Adiponectin-mediated changes in effector cells involved in the pathophysiology of rheumatoid arthritis. Arthritis Rheum. 2010;62:2886–99.PubMedCrossRefGoogle Scholar
  30. Fuller K, Kirstein B, Chambers TJ. Murine osteoclast formation and function: differential regulation by humoral agents. Endocrinology. 2006;147(4):1979–85.PubMedCrossRefGoogle Scholar
  31. Giles JT, van der Heijde DM, Bathon JM. Association of circulating adiponectin levels with progression of radiographic joint destruction in rheumatoid arthritis. Ann Rheum Dis. 2011;70(9):1562–8.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Halleux CM, Takahashi M, Delporte ML, et al. Secretion of adiponectin and regulation of apM1 gene expression in human visceral adipose tissue. Biochem Biophys Res Commun. 2001;288(5):1102–7.PubMedCrossRefGoogle Scholar
  33. Hamman A, Twardella D. Relationship of adiponectin with markers of systemic inflammation, atherogenic, dyslipidemia and heart failure in patients with coronary heart disease. Clin Chem. 2006;52:853–9.CrossRefGoogle Scholar
  34. Herfaarth H, Tarner IH, Anders S, et al. The potential of adiponectin in driving arthritis. J Immunol. 2006;176(7):4468–78.CrossRefGoogle Scholar
  35. Hofbauer LC, Brueck CC, Singh SK, et al. Osteoporosis in patients with diabetes mellitus. J Bone Miner Res. 2007;22(9):1317–28.PubMedCrossRefGoogle Scholar
  36. Horáková D, Azeem K, Benešová R, et al. Total and high molecular weight adiponectin levels and prediction of cardiovascular risk in diabetic patients. Int J Endocrinol. 2015;2015:545068.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem. 1996;271(18):10697–703.PubMedCrossRefGoogle Scholar
  38. Huang KC, Cheng WC, Yen RF, et al. Lack of independent relationship between plasma adiponectin, leptin levels and bone density in nondiabetic female adolescents. Clin Endocrinol (Oxf). 2004;61(2):204–8.CrossRefGoogle Scholar
  39. Inage K, Orita S, Yamauchi K, et al. The time course changes in bone metabolic markers after administering the anti-receptor activator of nuclear factor-kappa B ligand antibody and drug compliance among patients with osteoporosis. Asian Spine J. 2015;9(3):338–43.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Iwaki M, Matsuda M, Maeda N, et al. Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diabetes. 2003;52:1655–63.PubMedCrossRefGoogle Scholar
  41. Janghorbani M, Van Dam RM, Willett WC, et al. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol. 2007;166(5):495–505.PubMedCrossRefGoogle Scholar
  42. Jürimäe J, Jürimäe T. Plasma adiponectin concentration in healthy pre- and postmenopausal women: relationship with body composition, bone mineral, and metabolic variables. Am J Physiol Endocrinol Metab. 2007;293(1):E42–7.PubMedCrossRefGoogle Scholar
  43. Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev. 2005;26(3):439–51.PubMedCrossRefGoogle Scholar
  44. Kanazawa I, Yamaguchi T, Yano S, et al. Adiponectin and AMP kinase activator stimulate proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells. BMC Cell Biol. 2007;8:51–62.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kanis JA, Burlet N, Cooper C, European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO), et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Am J Physiol Endocrinol Metab. 2007;293(1):E42–7.CrossRefGoogle Scholar
  46. Karsenty G. Transcriptional control of skeletogenesis. Annu Rev Genomics Hum Genet. 2008;9:183–96.PubMedCrossRefGoogle Scholar
  47. Karsenty G, Kronenberg HM, Settembre C. Genetic control of bone formation. Annu Rev Cell Dev Biol. 2009;25:629–48.PubMedCrossRefGoogle Scholar
  48. Kemp PA, Ranganathan S, Li C, et al. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab. 2001;280(5):E745–51.Google Scholar
  49. Kershaw E, Flier J. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004;89:2548–56.PubMedCrossRefGoogle Scholar
  50. Kharroubi I, Rasschaert J, Eizirik DL, Cnop M. Expression of adiponectin receptors in pancreatic beta cells. Biochem Biophys Res Commun. 2003;312(4):1118–22.PubMedCrossRefGoogle Scholar
  51. Khosla S. Minireview: the OPG/RANKL/RANK system. Endocrinology. 2001;142(12):5050–5.PubMedCrossRefGoogle Scholar
  52. Khosla S, Atkinson E, Dunstan C, O’Fallon WM. W Effect of estrogen versus testosterone on circulating osteoprotegerin and other cytokine levels in normal elderly men. J Clin Endocrinol Metab. 2002;87(4):1550–4.PubMedCrossRefGoogle Scholar
  53. Kim AY, Lee YS, Kim KH, et al. Adiponectin represses colon cancer cell proliferation via AdipoR1- and -R2-mediated AMPK activation. Mol Endocrinol. 2010;24(7):1441–52.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kissebah AH, Sonnenberg GE, Myklebust J, et al. Quantitative trait loci on chromosomes 3 and 17 influence phenotypes of the metabolic syndrome. Proc Natl Acad Sci U S A. 2000;97(26):14478–83.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kobayashi H, Ouchi N, Kihara S, et al. Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin. Circ Res. 2004;94:27–31.CrossRefGoogle Scholar
  56. Kontogianni MD, Dafni UG, Routsias JG, Skopouli FN. Blood leptin and adiponectin as possible mediators of the relation between fat mass and BMD in perimenopausal women. J Bone Miner Res. 2004;19(4):546–51.PubMedCrossRefGoogle Scholar
  57. Krízová J, Dolinková M, Lacinová Z, et al. Adiponectin and resistin gene polymorphisms in patients with anorexia nervosa and obesity and its influence on metabolic phenotype. Physiol Res. 2008;57(4):539–46.PubMedGoogle Scholar
  58. Lago R, Gomez R, Lago F, et al. Changes in fat-derived hormones plasma concentrations: adiponectin, leptin, resistin and visfatin in rheumatoid arthritis subjects. Ann Rheum Dis. 2006;65:1198–201.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lago R, Gomez R, Otero M, et al. A new player in cartilage homeostasis: adiponectin induces nitric oxide synthase type II and pro-inflammatory cytokines in chondrocytes. Osteoarthritis Cartilage. 2008;16(9):1101–9.PubMedCrossRefGoogle Scholar
  60. Le Caire TJ, Palta M. Longitudinal Analysis of adiponectin through 20-year type 1 diabetes duration. J Diabetes Res. 2015;2015:730407.Google Scholar
  61. Lee H, Kim S, Kim A, et al. Adiponectin stimulates osteoblast differentiation through induction of COX2 in mesenchymal progenitor cells. Stem Cells. 2009;27(9):2254–62.PubMedCrossRefGoogle Scholar
  62. Liu LF, Shen WJ, Zhang ZH, et al. Adipocytes decrease Runx2 expression in osteoblastic cells: roles of PPARgamma and adiponectin. J Cell Physiol. 2010;225(3):837–45.PubMedCrossRefGoogle Scholar
  63. Ljubic S, Jazbec A, Tomic M, et al. Inverse levels of adiponectin in type 1 and type 2 diabetes are in accordance with the state of albuminuria. Int J Endocrinol. 2015;2015:372796.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lubkowska A, Dobek A, Mieszkowski J, et al. Adiponectin as a biomarker of osteoporosis in postmenopausal women: controversies. Dis Markers. 2014;2014:975178.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Luo X, Guo L, Yuan L, et al. Adiponectin stimulates human osteoblasts proliferation and differentiation via the MAPK signaling pathway. Exp Cell Res. 2005;309(1):99–109.PubMedCrossRefGoogle Scholar
  66. Luo X, Guo L, Xie H, et al. Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblast through the MAPK signaling pathway. J Bone Miner Res. 2006;21(10):1648–56.PubMedCrossRefGoogle Scholar
  67. Maeda K, Okubo K, Shimomura I, et al. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1. Biochem Biophys Res Commun. 1996;221:286–9.PubMedCrossRefGoogle Scholar
  68. Mahdy T, Atia S, Farid M, Adulatif A. Effect of Roux-en Y gastric bypass on bone metabolism in patients with morbid obesity: Mansoura experiences. Obes Surg. 2008;18(12):1526–31.PubMedCrossRefGoogle Scholar
  69. Matsui S, Yasui T, Tani A, et al. Association of circulating adiponectin with testosterone in women during the menopausal transition. Maturitas. 2012;73(3):255–60.PubMedCrossRefGoogle Scholar
  70. Melton 3rd LJ, Kan SH, Frye MA, et al. Epidemiology of vertebral fractures in women. Am J Epidemiol. 1989;129(5):1000–11.PubMedCrossRefGoogle Scholar
  71. Meyer M, Sellam J, Fellahi S, et al. Serum level of adiponectin is a surrogate independent biomarker of radiographic disease progression in early rheumatoid arthritis: results from the ESPOIR cohort. Arthritis Res Ther. 2013;15(6):R210.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Misra M, Soyka L, Miller K, et al. Serum osteoprotegerin in adolescent girls with anorexia nervosa. J Clin Endocrinol Metab. 2003;88(8):3816–22.PubMedCrossRefGoogle Scholar
  73. Misra KK, Miller J, Cord R, et al. Relationships between serum adipokines, insulin levels, and bone density in girls with anorexia nervosa. J Clin Endocrinol Metab. 2007;92:2046–52.PubMedCrossRefGoogle Scholar
  74. Mitsui Y, Gotoh M, Fukushima N, et al. Hyperadiponectinemia enhances bone formation in mice. BMC Musculoskelet Disord. 2011;12:18.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Mödder UI, Roforth MM, Hoey K, et al. Effects of estrogen on osteoprogenitor cells and cytokines/bone-regulatory factors in postmenopausal women. Bone. 2011;49(2):202–7.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Moore EE, Bendele AM, Thompson DL, et al. Fibroblast growth factor-18 stimulates chondrogenesis and cartilage repair in a rat model of injury-induced osteoarthritis. Osteoarthritis Cartilage. 2005;13(7):623–31.PubMedCrossRefGoogle Scholar
  77. Nakano Y, Tobe T, Choi-Miura NH, et al. Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. J Biochem. 1996;120:803–12.PubMedCrossRefGoogle Scholar
  78. Ohwada R, Hotta M, Sato K, et al. The relationship between serum levels of estradiol and osteoprotegerin in patients with anorexia nervosa. Endocr J. 2007;54:953–9.PubMedCrossRefGoogle Scholar
  79. Olsen SK, Garbi M, Zampieri N, et al. Fibroblast growth factor (FGF) homologous factors share structural but not functional homology with FGFs. J Biol Chem. 2003;278(36):34226–36.PubMedCrossRefGoogle Scholar
  80. Oshima K, Nampei A, Matsuda M, et al. Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem Biophys Res Commun. 2005;331(2):520–6.PubMedCrossRefGoogle Scholar
  81. Ostrowska Z, Ziora K, Kos-Kudła B, et al. Melatonin, the RANKL/RANK/OPG system, and bone metabolism in girls with anorexia nervosa. Endokrynol Pol. 2010;61(1):117–23.PubMedGoogle Scholar
  82. Otero M, Lago R, Gomez R, et al. Changes in plasma levels of fat-derived hormones adiponectin, leptin, resistin and visfatin in patients with rheumatoid arthritis. Ann Rheum Dis. 2006;65:1198–201.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Ott K. Osteoporosis and bone densitometry. Radiol Technol. 1998;70:129–48.PubMedGoogle Scholar
  84. Ouchi N, Kihara S, Arita Y, et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation. 2000; 102:1296–301.PubMedCrossRefGoogle Scholar
  85. Özkurt B, Özkurt ZN, Altay M, et al. The relationship between serum adiponectin level and anthropometry, bone mass, osteoporotic fracture risk in postmenopausal women. Eklem Hastalik Cerrahisi. 2009;20(2):78–84.PubMedGoogle Scholar
  86. Pajvani UB, Du X, Combs TP, et al. Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications for metabolic regulation and bioactivity. J Biol Chem. 2003;278(11):9073–85.PubMedCrossRefGoogle Scholar
  87. Pala HG, Ozalp Y, Yener AS, et al. Adiponectin levels in gestational diabetes mellitus and in pregnant women without glucose intolerance. Adv Clin Exp Med. 2015;24(1):85–92.PubMedCrossRefGoogle Scholar
  88. Palin MF, Bordignon VV, Murphy BD. Adiponectin and the control of female reproductive functions. Vitam Horm. 2012;90:239–87.PubMedCrossRefGoogle Scholar
  89. Pannacciulli N, Vettor R, Milan G, et al. Anorexia nervosa is characterized by increased adiponectin plasma levels and reduced nonoxidative glucose metabolism. J Clin Endocrinol Metab. 2003;88(4):1748–52.PubMedCrossRefGoogle Scholar
  90. Park GT, Morasso MI. Bone morphogenetic protein-2 (BMP-2) transactivates Dlx3 through Smad1 and Smad4: alternative mode for Dlx3 induction in mouse keratinocytes. Nucleic Acids Res. 2002;30(2):515–22.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.PubMedCrossRefGoogle Scholar
  92. Quercioli A, Montecucco F, Pataky Z, et al. Improvement in coronary circulatory function in morbidly obese individuals after gastric bypass-induced weight loss: relation to alterations in endocannabinoids and adipocytokines. Eur Heart J. 2013;34(27):2063–73.PubMedCrossRefGoogle Scholar
  93. Retnakaran R, Qi Y, Connelly PW, et al. Low adiponectin concentration during pregnancy predicts postpartum insulin resistance, beta cell dysfunction and fasting glycaemia. Diabetologia. 2010;53(2):268–76.PubMedCrossRefGoogle Scholar
  94. Richards JB, Valdes AM, Burling K, et al. Serum adiponectin and bone mineral density in women. J Clin Endocrinol Metab. 2007;92(4):1517–23.PubMedCrossRefGoogle Scholar
  95. Rosen CJ, Bouxsein ML. Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol. 2006;2(1):35–43.PubMedCrossRefGoogle Scholar
  96. Rosen CJ, Klibanski A. Bone, fat, and body composition: evolving concepts in the pathogenesis of osteoporosis. Am J Med. 2009;122(5):409–14.PubMedCrossRefGoogle Scholar
  97. Saito K, Tobe T, Minoshima S, et al. Organization of the gene for gelatin-binding protein (GBP28). Gene. 1999;229(1-2):67–73.PubMedCrossRefGoogle Scholar
  98. Schaffler A, Ehling A, Neumann E, et al. Adipocytokines in synovial fluid. JAMA. 2003;290:1709–10.PubMedCrossRefGoogle Scholar
  99. Scherer PE, Williams S, Fogliano M, et al. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem. 1995;270(45):26746–9.PubMedCrossRefGoogle Scholar
  100. Seo JB, Moon HM, Noh MJ, et al. Adipocyte determination- and differentiation-dependent factor 1/sterol regulatory element-binding protein 1c regulates mouse adiponectin expression. J Biol Chem. 2004;279:22108–17.PubMedCrossRefGoogle Scholar
  101. Shimada K, Miyazaki T, Daida H. Adiponectin and atherosclerotic disease. Clin Chim Acta. 2004;344(1-2):1–12.PubMedCrossRefGoogle Scholar
  102. Shinoda Y, Yamaguchi M, Ogata N, et al. Regulation of bone formation by adiponectin through autocrine/paracrine and endocrine pathways. J Cell Biochem. 2006;99(1):196–208.PubMedCrossRefGoogle Scholar
  103. Shrestha C, He H, Liu Y, et al. Changes in adipokines following laparoscopic Roux-en-Y gastric bypass surgery in Chinese individuals with type 2 diabetes mellitus and BMI of 22–30 kg · m(-2.). Int J Endocrinol. 2013;2013:240971.PubMedPubMedCentralGoogle Scholar
  104. Siddapur PR, Patil AB, Borde VS. Comparison of bone mineral density, T-Scores and serum zinc between diabetic and non diabetic postmenopausal women with osteoporosis. J Lab Physicians. 2015;7(1):43–8.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Siemińska L, Cichoń-Lenart A, Kajdaniuk D, et al. Sex hormones and adipocytokines in postmenopausal women. Pol Merkur Lekarski. 2006;20(120):727–30.PubMedGoogle Scholar
  106. Singhal V, Misra M, Klibanski A. Endocrinology of anorexia nervosa in young people: recent insights. Curr Opin Endocrinol Diabetes Obes. 2014;21(1):64–70.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Stefan N, Vozarova B, Funahashi T, et al. Plasma adiponectin concentration is associated with skeletal muscle insulin receptor tyrosine phosphorylation, and low plasma concentration precedes a decrease in whole-body insulin sensitivity in humans. Diabetes. 2002;51(6):1884–8.PubMedCrossRefGoogle Scholar
  108. Stępień M, Wlazeł RN, Paradowski M, et al. Serum concentrations of adiponectin, leptin, resistin, ghrelin and insulin and their association with obesity indices in obese normo- and hypertensive patients – pilot study. Arch Med Sci. 2012;8:431–6.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Sun X, Feng X, Tan W, et al. Adiponectin exacerbates collagen-induced arthritis via enhancing Th17 response and prompting RANKL expression. Sci Rep. 2015;5:11296.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Tagami T, Satoh N, Usui T, et al. Adiponectin in anorexia nervosa and bulimia nervosa. J Clin Endocrinol Metab. 2004;89(4):1833–7.PubMedCrossRefGoogle Scholar
  111. Takahashi M, Arita Y, Yamagata K, et al. Genomic structure and mutations in adipose-specific gene, adiponectin. Int J Obes Relat Metab Disord. 2000;24(7):861–8.PubMedCrossRefGoogle Scholar
  112. Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000;289(5484):1504–8.PubMedCrossRefGoogle Scholar
  113. Teitelbaum SL. Osteoclasts: what do they do and how do they do it? Am J Pathol. 2007;170(2):427–35.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Teitelbaum SL, Ross FP. Genetic regulation of osteoclast development and function. Nat Rev Genet. 2003;4(8):638–49.PubMedCrossRefGoogle Scholar
  115. Tenta R, Panagiotakos DB, Fragopoulou E, et al. Osteoprotegerin and nuclear factor-kappaB ligand are associated with leptin and adiponectin levels, in apparently healthy women. J Musculoskelet Neuronal Interact. 2010;10(2):174–9.PubMedGoogle Scholar
  116. Van Geel T, Geusens P, Nagtzaam I, et al. Risk factors for clinical fractures among postmenopausal women: a 10-year prospective study. Menopause Int. 2007;13(3):110–5.PubMedGoogle Scholar
  117. Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes – a meta-analysis. Osteoporos Int. 2007;18:427–44.PubMedCrossRefGoogle Scholar
  118. Waki H, Yamauchi T, Kamon J, et al. Impaired multimerization of human adiponectin mutants associated with diabetes. Molecular structure and multimer formation of adiponectin. J Biol Chem. 2003;278(41):40352–63.PubMedCrossRefGoogle Scholar
  119. Wang QP, Yang L, Li XP, et al. Effects of 17β-estradiol on adiponectin regulation of the expression of osteoprotegerin and receptor activator of nuclear factor-kB ligand. Bone. 2012;51(3):515–23.PubMedCrossRefGoogle Scholar
  120. Williams G, Wang Y, Callon K. In vitro and in vivo effects of adiponectin on bone. Endocrinology. 2009;150(8):3603–10.PubMedCrossRefGoogle Scholar
  121. Xibillé-Friedmann DX, Ortiz-Panozo E, Bustos Rivera-Bahena C, et al. Leptin and adiponectin as predictors of disease activity in rheumatoid arthritis. Clin Exp Rheumatol. 2015;33(4):471–7.Google Scholar
  122. Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med. 2001;7(8):941–6.PubMedCrossRefGoogle Scholar
  123. Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fattyacid oxidation by activating AMP-activated protein kinase. Nat Med. 2002;8(11):1288–95.PubMedCrossRefGoogle Scholar
  124. Yamauchi T, Kamon J, Ito Y, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003;423(6941):762–9.PubMedCrossRefGoogle Scholar
  125. Yasuda H, Shima N, Nakagawa N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A. 1998;95(7):3597–602.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Zhu F, Friedman MS, Luo W, et al. The transcription factor osterix (SP7) regulates BMP6-induced human osteoblast differentiation. J Cell Physiol. 2012;227(6):2677–85.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Zillikens MC, Uitterlinden AG, van Leeuwen JP, et al. The role of body mass index, insulin, and adiponectin in the relation between fat distribution and bone mineral density. Calcif Tissue Int. 2010;86(2):116–25.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Anna Lubkowska
    • 1
    Email author
  • Aleksandra Radecka
    • 1
  • Jan Mieszkowski
    • 2
  1. 1.Department of Functional Diagnostics and Physical Medicine, Faculty of Health SciencesPomeranian Medical University in SzczecinSzczecinPoland
  2. 2.Institute of Physical Culture, Faculty of Physical Education, Health and TourismKazimierz Wielki University in BydgoszczBydgoszczPoland

Personalised recommendations